Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067619

RESUMEN

In this study, a fluorescence resonance energy transfer (FRET)-based aptasensor for the detection of aflatoxin B1 (AFB1) was designed using a carboxyfluorescein (FAM)-labeled aptamer and short complementary DNA (cDNA) labeled with low molecular quencher RTQ1. The sensing principle was based on the detection of restored FAM-aptamer fluorescence due to the ligand-induced displacement of cDNA in the presence of AFB1, leading to the destruction of the aptamer/cDNA duplex and preventing the convergence of FAM and RTQ1 at the effective FRET distance. Under optimal sensing conditions, a linear correlation was obtained between the fluorescence intensity of the FAM-aptamer and the AFB1 concentration in the range of 2.5-208.3 ng/mL with the detection limit of the assay equal to 0.2 ng/mL. The assay time was 30 min. The proposed FRET aptasensor has been successfully validated by analyzing white wine and corn flour samples, with recovery ranging from 76.7% to 91.9% and 84.0% to 86.5%, respectively. This work demonstrates the possibilities of labeled cDNA as an effective and easily accessible tool for sensitive AFB1 detection. The homogeneous FRET aptasensor is an appropriate choice for contaminant screening in complex matrices.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Aflatoxina B1 , ADN Complementario/genética , Transferencia Resonante de Energía de Fluorescencia , Ligandos , Aptámeros de Nucleótidos/genética , Límite de Detección
2.
Biosensors (Basel) ; 13(12)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38131794

RESUMEN

CRISPR/Cas12a is a potent biosensing tool known for its high specificity in DNA analysis. Cas12a recognizes the target DNA and acquires nuclease activity toward single-stranded DNA (ssDNA) probes. We present a straightforward and versatile approach to transforming common Cas12a-cleavable DNA probes into enhancing tools for fluorescence anisotropy (FA) measurements. Our study involved investigating 13 ssDNA probes with linear and hairpin structures, each featuring fluorescein at one end and a rotation-slowing tool (anchor) at the other. All anchors induced FA changes compared to fluorescein, ranging from 24 to 110 mr. Significant FA increases (up to 180 mr) were obtained by adding divalent metal salts (Mg2+, Ca2+, Ba2+), which influenced the rigidity and compactness of the DNA probes. The specific Cas12a-based recognition of double-stranded DNA (dsDNA) fragments of the bacterial phytopathogen Erwinia amylovora allowed us to determine the optimal set (probe structure, anchor, concentration of divalent ion) for FA-based detection. The best sensitivity was obtained using a hairpin structure with dC10 in the loop and streptavidin located near the fluorescein at the stem in the presence of 100 mM Mg2+. The detection limit of the dsDNA target was equal to 0.8 pM, which was eight times more sensitive compared to the common fluorescence-based method. The enhancing set ensured detection of single cells of E. amylovora per reaction in an analysis based on CRISPR/Cas12a with recombinase polymerase amplification. Our approach is universal and easy to implement. Combining FA with Cas12a offers enhanced sensitivity and signal reliability and could be applied to different DNA and RNA analytes.


Asunto(s)
Técnicas Biosensibles , Sales (Química) , Sistemas CRISPR-Cas , Reproducibilidad de los Resultados , ADN , ADN de Cadena Simple , Fluoresceína
3.
Molecules ; 28(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37836816

RESUMEN

The toxic effects of antimony pose risks to human health. Therefore, simple analytical techniques for its widescale monitoring in water sources are in demand. In this study, a sensitive microplate apta-enzyme assay for Sb3+ detection was developed. The biotinylated aptamer A10 was hybridized with its complementary biotinylated oligonucleotide T10 and then immobilized on the surface of polysterene microplate wells. Streptavidin labeled with horseradish peroxidase (HRP) bound to the biotin of a complementary complex and transformed the 3,3',5,5'-tetramethylbenzidine substrate, generating an optical signal. Sb3+ presenting in the sample bounded to an A10 aptamer, thus releasing T10, preventing streptavidin-HRP binding and, as a result, reducing the optical signal. This effect allowed for the detection of Sb3+ with a working range from 0.09 to 2.3 µg/mL and detection limit of 42 ng/mL. It was established that the presence of Ag+ at the stage of A10/T10 complex formation promoted dehybridization of the aptamer A10 and the formation of the A10/Sb3+ complex. The working range of the Ag+-enhanced microplate apta-enzyme assay for Sb3+ was determined to be 8-135 ng/mL, with a detection limit of 1.9 ng/mL. The proposed enhanced approach demonstrated excellent selectivity against other cations/anions, and its practical applicability was confirmed through an analysis of drinking and spring water samples with recoveries of Sb3+ in the range of 109.0-126.2% and 99.6-106.1%, respectively.


Asunto(s)
Aptámeros de Nucleótidos , Plata , Humanos , Estreptavidina , Oligonucleótidos , Cationes , Pruebas de Enzimas/métodos , Peroxidasa de Rábano Silvestre , Agua , Límite de Detección
4.
Materials (Basel) ; 16(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36837103

RESUMEN

Surface-enhanced Raman scattering (SERS) is considered an efficient technique providing high sensitivity and fingerprint specificity for the detection of pesticide residues. Recent developments in SERS-based detection aim to create flexible plasmonic substrates that meet the requirements for non-destructive analysis of contaminants on curved surfaces by simply wrapping or wiping. Herein, we reported a flexible SERS substrate based on cellulose fiber (CF) modified with silver nanostructures (AgNS). A silver film was fabricated on the membrane surface with an in situ silver mirror reaction leading to the formation of a AgNS-CF substrate. Then, the substrate was decorated through in situ synthesis of raspberry-like silver nanostructures (rAgNS). The SERS performance of the prepared substrate was tested using 4-mercaptobenzoic acid (4-MBA) as a Raman probe and compared with that of the CF-based plasmonic substrates. The sensitivity of the rAgNS/AgNS-CF substrate was evaluated by determining the detection limit of 4-MBA and an analytical enhancement factor, which were 10 nM and ~107, respectively. Further, the proposed flexible rAgNS/AgNS-CF substrate was applied for SERS detection of malathion. The detection limit for malathion reached 0.15 mg/L, which meets the requirements about its maximum residue level in food. Thus, the characteristics of the rAgNS/AgNS-CF substrate demonstrate the potential of its application as a label-free and ready-to-use sensing platform for the SERS detection of trace hazardous substances.

5.
Biosensors (Basel) ; 12(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36354511

RESUMEN

The use of a large amount of toxic synthetic materials leads to an increase in the pollution of environmental objects. Phthalates are compounds structurally related to esters of phthalic acid that are widely used in the manufacturing of synthetic packaging materials as plasticizers. Their danger is conditioned by leaching into the environment and penetrating into living organisms with negative consequences and effects on various organs and tissues. This work presents the first development of lateral flow immunoassay to detect dibutyl phthalate, one of the most common representatives of the phthalates group. To form a test zone, a hapten-protein conjugate was synthesized, and gold nanoparticles conjugated with antibodies to dibutyl phthalate were used as a detecting conjugate. The work includes the preparation of immunoreagents, selectivity investigation, and the study of the characteristics of the medium providing a reliable optical signal. Under the selected conditions for the analysis, the detection limit was 33.4 ng/mL, and the working range of the determined concentrations was from 42.4 to 1500 ng/mL. Time of the assay-15 min. The developed technique was successfully applied to detect dibutyl phthalate in natural waters with recovery rates from 75 to 115%.


Asunto(s)
Dibutil Ftalato , Nanopartículas del Metal , Dibutil Ftalato/análisis , Oro , Inmunoensayo/métodos
6.
Biosensors (Basel) ; 11(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34940267

RESUMEN

The current COVID-19 pandemic has increased the demand for pathogen detection methods that combine low detection limits with rapid results. Despite the significant progress in methods and devices for nucleic acid amplification, immunochemical methods are still preferred for mass testing without specialized laboratories and highly qualified personnel. The most widely used immunoassays are microplate enzyme-linked immunosorbent assay (ELISA) with photometric detection and lateral flow immunoassay (LFIA) with visual results assessment. However, the disadvantage of ELISA is its considerable duration, and that of LFIA is its low sensitivity. In this study, the modified LFIA of a specific antigen of the causative agent of COVID-19, spike receptor-binding domain, was developed and characterized. This modified LFIA includes the use of gold nanoparticles with immobilized antibodies and 4-mercaptobenzoic acid as surface-enhanced Raman scattering (SERS) nanotag and registration of the nanotag binding by SERS spectrometry. To enhance the sensitivity of LFIA-SERS analysis, we determined the optimal compositions of SERS nanotags and membranes used in LFIA. For benchmark comparison, ELISA and conventional colorimetric LFIA were used with the same immune reagents. The proposed method combines a low detection limit of 0.1 ng/mL (at 0.4 ng/mL for ELISA and 1 ng/mL for qualitative LFIA) with a short assay time equal to 20 min (at 3.5 h for ELISA and 15 min for LFIA). The results obtained demonstrate the promise of using the SERS effects in membrane immuno-analytical systems.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19 , Inmunoensayo , Nanopartículas del Metal , Espectrometría Raman , Antígenos Virales/aislamiento & purificación , COVID-19/diagnóstico , Oro , Humanos , SARS-CoV-2
7.
Biosensors (Basel) ; 11(12)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34940269

RESUMEN

The growing interest in the development of new platforms for the application of Raman spectroscopy techniques in biosensor technologies is driven by the potential of these techniques in identifying chemical compounds, as well as structural and functional features of biomolecules. The effect of Raman scattering is a result of inelastic light scattering processes, which lead to the emission of scattered light with a different frequency associated with molecular vibrations of the identified molecule. Spontaneous Raman scattering is usually weak, resulting in complexities with the separation of weak inelastically scattered light and intense Rayleigh scattering. These limitations have led to the development of various techniques for enhancing Raman scattering, including resonance Raman spectroscopy (RRS) and nonlinear Raman spectroscopy (coherent anti-Stokes Raman spectroscopy and stimulated Raman spectroscopy). Furthermore, the discovery of the phenomenon of enhanced Raman scattering near metallic nanostructures gave impetus to the development of the surface-enhanced Raman spectroscopy (SERS) as well as its combination with resonance Raman spectroscopy and nonlinear Raman spectroscopic techniques. The combination of nonlinear and resonant optical effects with metal substrates or nanoparticles can be used to increase speed, spatial resolution, and signal amplification in Raman spectroscopy, making these techniques promising for the analysis and characterization of biological samples. This review provides the main provisions of the listed Raman techniques and the advantages and limitations present when applied to life sciences research. The recent advances in SERS and SERS-combined techniques are summarized, such as SERRS, SE-CARS, and SE-SRS for bioimaging and the biosensing of molecules, which form the basis for potential future applications of these techniques in biosensor technology. In addition, an overview is given of the main tools for success in the development of biosensors based on Raman spectroscopy techniques, which can be achieved by choosing one or a combination of the following approaches: (i) fabrication of a reproducible SERS substrate, (ii) synthesis of the SERS nanotag, and (iii) implementation of new platforms for on-site testing.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Nanoestructuras , Espectrometría Raman
8.
Biosensors (Basel) ; 10(12)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287157

RESUMEN

This study provides a comparative assessment of the various nanodispersed markers and related detection techniques used in the immunochromatographic detection of an antibiotic lincomycin (LIN). Improving the sensitivity of the competitive lateral flow immunoassay is important, given the increasing demands for the monitoring of chemical contaminants in food. Gold nanoparticles (AuNPs) and CdSe/ZnS quantum dots (QDs) were used for the development and comparison of three approaches for the lateral flow immunoassay (LFIA) of LIN, namely, colorimetric, fluorescence, and surface-enhanced Raman spectroscopy (SERS)-based LFIAs. It was demonstrated that, for colorimetric and fluorescence analysis, the detection limits were comparable at 0.4 and 0.2 ng/mL, respectively. A SERS-based method allowed achieving the gain of five orders of magnitude in the assay sensitivity (1.4 fg/mL) compared to conventional LFIAs. Therefore, an integration of a SERS reporter into the LFIA is a promising tool for extremely sensitive quantitative detection of target analytes. However, implementation of this time-consuming technique requires expensive equipment and skilled personnel. In contrast, conventional AuNP- and QD-based LFIAs can provide simple, rapid, and inexpensive point-of-care testing for practical use.


Asunto(s)
Inmunoensayo , Lincomicina/análisis , Antibacterianos , Fluorescencia , Oro , Límite de Detección , Nanopartículas del Metal , Puntos Cuánticos , Espectrometría Raman
9.
Mikrochim Acta ; 186(7): 423, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31187212

RESUMEN

A rapid semi-quantitative gradient lateral flow immunoassay (LFIA) of procalcitonin (PCT), a peptide precursor of the hormone calcitonin, was developed. The method is based on particular analyte cut-offs by immobilizing specific antibodies on the test strip with a consistent (gradient) increase in concentration from line to line. Semi-quantitative multi-range analysis is evaluated visually by counting the number of colored test lines corresponding to a certain concentration range of sepsis marker: [PCT]˂0.25; 0.25 ≤ [PCT] < 0.5; 0.5 ≤ [PCT] < 2; 2 ≤ [PCT] < 10; [PCT] ≥ 10 ng·mL-1. This multi-range gradient LFIA was implemented by using two types of label: spherical gold nanoparticles (35 nm) and hierarchical popcorn-like gold nanoparticles (100 nm). The comparison of this LFIA with an ELISA (for n = 82) yielded 87.5% and 76.6% sensitivities, and 92.3% and 92.3% specificities, respectively. Thus, multi-range gradient LFIA performs well at PCT thresholds, which is important for early diagnosis of sepsis and severe bacterial infection. In our perception, this method has a wide scope in that it may be implemented in numerous other LFIA based test systems. Graphical abstract Schematic of the gradient lateral flow immunoassay for determination of clinically relevant procalcitonin ranges. It allows to reach the correlation between the number of developed test lines and procalcitonin concentration range in serum by pre-immobilization of capture antibodies in a consistently (gradient) increasing concentration.


Asunto(s)
Polipéptido alfa Relacionado con Calcitonina/sangre , Anticuerpos Inmovilizados/inmunología , Anticuerpos Monoclonales/inmunología , Biomarcadores/sangre , Humanos , Inmunoensayo/métodos , Polipéptido alfa Relacionado con Calcitonina/inmunología , Sepsis/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA