Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 843099, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685008

RESUMEN

Grafting induces precocity and maintains clonal integrity in fruit tree crops. However, the complex rootstock × scion interaction often precludes understanding how the tree phenotype is shaped, limiting the potential to select optimum rootstocks. Therefore, it is necessary to assess (1) how seedling progenies inherit trait variation from elite 'plus trees', and (2) whether such family superiority may be transferred after grafting to the clonal scion. To bridge this gap, we quantified additive genetic parameters (i.e., narrow sense heritability-h 2, and genetic-estimated breeding values-GEBVs) across landraces, "criollo", "plus trees" of the super-food fruit tree crop avocado (Persea americana Mill.), and their open-pollinated (OP) half-sib seedling families. Specifically, we used a genomic best linear unbiased prediction (G-BLUP) model to merge phenotypic characterization of 17 morpho-agronomic traits with genetic screening of 13 highly polymorphic SSR markers in a diverse panel of 104 avocado "criollo" "plus trees." Estimated additive genetic parameters were validated at a 5-year-old common garden trial (i.e., provenance test), in which 22 OP half-sib seedlings from 82 elite "plus trees" served as rootstocks for the cv. Hass clone. Heritability (h 2) scores in the "criollo" "plus trees" ranged from 0.28 to 0.51. The highest h 2 values were observed for ribbed petiole and adaxial veins with 0.47 (CI 95%0.2-0.8) and 0.51 (CI 0.2-0.8), respectively. The h 2 scores for the agronomic traits ranged from 0.34 (CI 0.2-0.6) to 0.39 (CI 0.2-0.6) for seed weight, fruit weight, and total volume, respectively. When inspecting yield variation across 5-year-old grafted avocado cv. Hass trees with elite OP half-sib seedling rootstocks, the traits total number of fruits and fruits' weight, respectively, exhibited h 2 scores of 0.36 (± 0.23) and 0.11 (± 0.09). Our results indicate that elite "criollo" "plus trees" may serve as promissory donors of seedling rootstocks for avocado cv. Hass orchards due to the inheritance of their outstanding trait values. This reinforces the feasibility to leverage natural variation from "plus trees" via OP half-sib seedling rootstock families. By jointly estimating half-sib family effects and rootstock-mediated heritability, this study promises boosting seedling rootstock breeding programs, while better discerning the consequences of grafting in fruit tree crops.

2.
J Sci Food Agric ; 95(7): 1562-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25131258

RESUMEN

BACKGROUND: Cape gooseberry (Physalis peruviana) is an exotic fruit highly valued for its organoleptic properties and bioactive compounds. Considering that the presence of phenolics and ascorbic acid could contribute to its functional capacity, it is important to investigate the quality parameters, bioactive contents and functional properties with respect to genotype and ripening time. In this study the genotype effect was evaluated in 15 cultivars for two different harvest times. Changes during maturation were recorded in two commercial cultivars within seven levels of maturity. RESULTS: Multivariate statistical analysis suggested that phenolic content and ORAC value were mainly affected by harvest time and that ascorbic acid content and DPPH level were mainly affected by genotype. In addition, acidity, phenolic content, ORAC value and inhibition of LDL oxidation decreased with maturity, but soluble solids content, ascorbic acid content, ß-carotene content and DPPH-scavenging activity were higher in mature fruits. CONCLUSION: The phenolic content, ascorbic acid content and antioxidant properties of Cape gooseberry fruit were strongly affected by cultivar, harvest time and maturity state. Consequently, the harvest time must be scheduled carefully to gain the highest proportion of bioactive compounds according to the specific cultivar and the environment where it is grown.


Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Frutas , Genotipo , Fenoles/farmacología , Physalis/metabolismo , beta Caroteno/farmacología , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Compuestos de Bifenilo/metabolismo , LDL-Colesterol/sangre , Fluoresceínas , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Alimentos Funcionales , Humanos , Ouabaína/análogos & derivados , Fenoles/metabolismo , Physalis/genética , Physalis/crecimiento & desarrollo , Picratos/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , beta Caroteno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA