Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 22(23): 9313-9318, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36442504

RESUMEN

Single-electron sources, formed by a quantum dot (QD), are key elements for realizing electron analogue of quantum optics. We develop a new type of single-electron source with functionalities that are absent in existing sources. This source couples with only one lead. By an AC rf drive, it successively emits holes and electrons cotraveling in the lead, as in the mesoscopic capacitor. Thanks to the considerable charging energy of the QD, however, emitted electrons have energy levels a few tens of millielectronvolts above the Fermi level, so that emitted holes and electrons are split by a potential barrier on demand, resulting in a rectified quantized current. The resulting pump map exhibits quantized triangular islands, in good agreement with our theory. We also demonstrate that the source can be operated with another tunable-barrier single-electron source in a series double QD geometry, showing parallel electron pumping by a common gate driving.

2.
Nanotechnology ; 25(29): 295201, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24981295

RESUMEN

We demonstrate a simple but efficient design for forming tunable single, double and triple quantum dots (QDs) in a sub-µm-long carbon nanotube (CNT) with two major features that distinguish this design from that of traditional CNT QDs: the use of i) Al2Ox tunnelling barriers between the CNT and metal contacts and ii) local side gates for controlling both the height of the potential barrier and the electron-confining potential profile to define multiple QDs. In a serial triple QD, in particular, we find that a stable molecular coupling state exists between two distant outer QDs. This state manifests in anti-crossing charging lines that correspond to electron and hole triple points for the outer QDs. The observed results are also reproduced in calculations based on a capacitive interaction model with reasonable configurations of electrons in the QDs. Our design using artificial tunnel contacts and local side gates provides a simple means of creating multiple QDs in CNTs for future quantum-engineering applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA