Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 8(3): 2625-31, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24502655

RESUMEN

We apply a combination of photoswitch-modified DNA and AFM-based pulling measurements to study the force-induced melting of double-stranded DNA in the unzipping geometry. We measure the differences in peak rupture force for azobenzene-modified DNA, as the incorporated azobenzenes are photoswitched reversibly between the trans and the cis form. Fitting our rupture force versus loading rate data, we obtain off rate (koff) at zero force values in the range of ∼10 s(-1). We show that the change in peak rupture force and koff induced by destabilizing the DNA duplex depends on the position of the destabilizing azobenzene photoswitch relative to the force-loading site. When the azobenzenes are proximal to the unzipping end, the decrease in peak force and koff upon azobenzene photoisomerization is significantly larger than when the azobenzene is distal to the site of force loading. We interpret these results as experimental evidence supporting the picture that the destabilization of a double-stranded DNA by a photoswitch isomerization is localized to a small bubble around the photoswitch.


Asunto(s)
ADN/química , Luz , Fenómenos Mecánicos , Microscopía de Fuerza Atómica , Compuestos Azo/química , ADN/genética
2.
Langmuir ; 28(39): 13892-9, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22946889

RESUMEN

Work function changes of Au were measured by Kelvin probe force microscopy (KPFM) in the nonpolar liquid decane. As a proof of principle for the measurement in liquids, we investigated the work function change of an Au substrate upon hexadecanethiol chemisorption. To relate the measured contact potential difference (CPD) during the chemisorption of alkanethiols to a change of the work function, the influence of physisorbed decane must be taken into account. It is crucial that either the work function of the scanning probe microscope (SPM) tip or the sample surface remains constant throughout the reaction, since both contribute to the CPD. We describe two routes for determining the work function shift of Au coated with a monolayer of alkanethiols: In the first route, the SPM tips were taken as reference surfaces (constant tip work function). For this approach, we used Au(111) surfaces and kept the SPM tip ex situ during the adsorption process. In the second route, structured surfaces with reactive and inert parts were studied by KPFM (constant reference work function). For this route, we prepared nanometer sized Au structures by nanosphere lithography on SiO(x) substrates. Now, the SiO(x) served as the inert reference surface. The shifts in the work function after exposure to the hexadecanethiol (HDT) solution were determined to be ΔΦ(Au+HDT,decane-Au,air) = -1.33 eV ± 0.07 eV (route I) and ΔΦ(Au+HDT,decane-Au,air) = -1.46 eV ± 0.04 eV (route II). Both values are in excellent agreement with the work function shifts determined by ultraviolet photoemission spectroscopy (UPS) reported in literature. The presented procedures of measuring work function changes in decane open new ways to study local reactions at solid-liquid interfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA