Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 247: 116261, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823224

RESUMEN

Pregabalin (PGB) is a γ-aminobutyric acid (GABA) alkylated analog prescribed to treat neuropathic pain, fibromyalgia, and postherpetic neuralgia. Using analytical, spectroscopic methods and molecular docking and molecular dynamics (MD) simulations, a detailed experimental and theoretical investigation was conducted into the binding process and interactions between PGB and double-stranded fish sperm deoxyribonucleic acid (dsDNA). It was evident from the collected experimental results that PGB binds with ds-DNA. PGB attaches to dsDNA via minor groove binding, as demonstrated by the results of electrochemical studies, UV-Vis absorption spectroscopy, and replacement study with ethidium bromide and Hoechst-32588. PGB's binding constant (Kb) with dsDNA, as determined by the Benesi-Hildebrand plot, is 2.41×104 ± 0.30 at 298 K. The fluorescence investigation indicates that PGB and dsDNA have a binding stoichiometry (n) of 1.21 ± 0.09. Molecular docking simulations were used in the research to computational determination of the interactions between PGB and dsDNA. The findings demonstrated that minor groove binding was the mechanism by which PGB interacted with dsDNA. Based on the electrochemically responsive PGB-dsDNA biosensor, we developed a technique for low-concentration detection of PGB utilizing differential pulse voltammetry (DPV). The voltammetric analysis of the peak current decrease in the deoxyadenosine oxidation signals resulting from the association between PGB and dsDNA enabled a sensitive estimation of PGB in pH 4.80 acetate buffer. The deoxyguanosine oxidation signals exhibited a linear relationship between 2 and 16 µM PGB. The values for the limit of detection (LOD) and limit of quantitation (LOQ) were 0.57 µM and 1.91 µM, respectively.


Asunto(s)
Técnicas Biosensibles , ADN , Técnicas Electroquímicas , Simulación del Acoplamiento Molecular , Pregabalina , ADN/química , ADN/análisis , Pregabalina/química , Pregabalina/análisis , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Simulación de Dinámica Molecular , Animales , Espectrofotometría Ultravioleta/métodos , Masculino , Límite de Detección , Espermatozoides/química , Espectrometría de Fluorescencia/métodos , Peces
2.
Artículo en Inglés | MEDLINE | ID: mdl-38309044

RESUMEN

Atypical antidepressant mirtazapine (MIR) is mostly prescribed for the management of major depressive disorder. The identification of MIR in pharmaceutical dosage forms was made possible by developing a novel, quick, sensitive high-performance liquid chromatography (HPLC) approach that was verified in accordance with ICH recommendations. In the first part of this study, HPLC investigations were optimized with regard to variables including pH, working column, mobile phase, temperature, and flow rate. The limit of detection (LOD) was 0.013 ppm, the limit of quantification (LOQ) was 0.044 ppm, and the linear range was computed as 0.5-15 ppm (R2 = 0.9998). The recovery investigation assessed the method's accuracy, which was shown to range between 98.82 and 100.97 %. In the second part, by using UV-vis spectroscopy, HPLC, thermal denaturation, and viscosity measurements, the mechanism of binding interaction of MIR with double-stranded fish sperm deoxyribonucleic acid (dsDNA) has been thoroughly studied. The DNA binding constants (Kb) were determined using UV-Vis absorption and HPLC methods. To investigate the interactions of MIR with dsDNA, molecular docking calculations and additionally, molecular dynamics simulations were performed. Results showed that MIR is located in the minor groove of dsDNA, and in addition to hydrogen bonding, electrostatic interaction is also formed between the aromatic ring of MIR and phosphate oxygen of dsDNA. Finally, a binding characterization study using MIR tablets was also conducted in order to assess the interaction mechanism of the DNA with the drug using the validated analytical procedure developed for the MIR molecule.


Asunto(s)
Trastorno Depresivo Mayor , Masculino , Animales , Mirtazapina , Cromatografía Líquida de Alta Presión/métodos , Simulación del Acoplamiento Molecular , Semen/química , Comprimidos , ADN , Reproducibilidad de los Resultados
3.
Biosensors (Basel) ; 13(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979512

RESUMEN

Eltrombopag is a powerful adjuvant anticancer drug used in treating MS (myelodysplastic syndrome) and AML (acute myeloid leukemia) diseases. In this study, the interaction mechanism between eltrombopag and DNA was studied by voltammetry, spectroscopic techniques, and viscosity measurements. We developed a DNA-based biosensor and nano-biosensor using reduced graphene oxide-modified glassy carbon electrode to detect DNA-eltrombopag binding. The reduction of desoxyguanosine (dGuo) and desoxyadenosine (dAdo) oxidation signals in the presence of the drug demonstrated that a strong interaction could be established between the eltrombopag and dsDNA. The eltrombopag-DNA interaction was further investigated by UV absorption and fluorescence emission spectroscopy to gain more quantitative insight on binding. Viscosity measurements were utilized to characterize the binding mode of the drug. To shed light on the noncovalent interactions and binding mechanism of eltrombopag molecular docking and molecular dynamics (MD), simulations were performed. Through simultaneously carried out experimental and in silico studies, it was established that the eltrombopag binds onto the DNA via intercalation.


Asunto(s)
Antineoplásicos , Técnicas Biosensibles , Simulación del Acoplamiento Molecular , ADN/química , Espectrometría de Fluorescencia , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
4.
J Biomol Struct Dyn ; 41(9): 4048-4064, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35416121

RESUMEN

A new 3-(5-methyl-2-thiazolylamino)phthalide molecule, 3-((5-methylthiazol-2-yl)amino)isobenzofuran-1(3H)-one, was synthesized and characterized experimentally by FT-IR, NMR, UV-Vis, and single-crystal X-ray analysis and theoretically by quantum chemical calculations. The single-crystal X-ray studies revealed that the compound crystallizes in the monoclinic space group P-21/c with unit-cell parameters a = 8.0550(6) Å, b = 6.1386(3) Å, c = 23.3228(18) Å, ß = 97.724(6)° and Z = 4. Optimized geometries and the vibrational frequencies were studied at the density functional theory (DFT) level by using the hybrid functional B3LYP with a 6-311 G (d,p) basis set. The title compound was evaluated for its anti-quorum sensing (anti-QS) activity on Chromobacterium violaceum 12472 and additionally for its antibacterial activity against Staphylococcus aureus 29213, Staphylococcus epidermidis 12228, Pseudomonas aeruginosa 27853, Escherichia coli 25922, and Proteus mirabilis 14153. The lowest MIC value was 0.24 µg/mL for S. aureus 29213 and the highest MIC value was 30.75 µg/mL for E. coli 25922. While anti-bacterial activity was observed in those other than the S. epidermidis and P. Mirabilis, anti-QS activity wasn't detected. Investigations on dsDNA binding affinity indicate that the title compound binds to dsDNA via the groove binding mode. Molecular docking calculations and molecular dynamics simulations results showed also that the title compound prefers binding to the minor groove of dsDNA and remains stable in the minor groove throughout the molecular dynamics simulation.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Escherichia coli , Staphylococcus aureus , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier
5.
ACS Omega ; 7(38): 34495-34505, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36188240

RESUMEN

In this study, axitinib (AXI), a potent and selective inhibitor of vascular endothelial growth factor receptor (VEGFR) tyrosine kinase and used as a second-generation targeted drug, was investigated electrochemically under optimized conditions using multiwalled carbon nanotubes/iron(III) oxide nanoparticle-chitosan nanocomposite (MWCNT/Fe2O3@chitosan NC) modified on the glassy carbon electrode (GCE) surface. Characterization of the modified electrode was performed using scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The adsorptive stripping differential pulse voltammetric (AdSDPV) technique was used for the sensitive, rapid, and precise detection of AXI. The current peak obtained with the MWCNT/Fe2O3@chitosan NC modified electrode was 23 times higher compared to the bare electrode. The developed modified electrode showed excellent electrocatalytic activity in AXI oxidation. Under optimized conditions, the effect of supporting electrolyte and pH was investigated, and 0.1 M H2SO4 was chosen as the electrolyte with the highest peak current for the target analyte. In the concentration range of MWCNT/Fe2O3@chitosan NC/GCE, 6 × 10-9 and 1 × 10-6 M, the limit of detection (LOD) and limit of quantification (LOQ) values were calculated to be 0.904 and 0.0301 pM, respectively. Tablet and serum samples were used for the applicability of the developed sensor, relative standard deviation (RSD) values for all samples were below 2%, and the recovery results were 99.23 and 101.84%, respectively. The MWCNT/Fe2O3@chitosan NC/GCE designed to determine AXI demonstrated the applicability, selectivity, precision, and accuracy of the sensor. The mechanism of electron transfer from the modified GCE surface to the analyte solution is studied via modeling the modified GCE surface by the density functional theory (DFT) method at B3LYP/6-311+g(d,p) and M062X/6-31g(d,p) levels. We observed that the iron oxide nanoparticles play an important role in channeling electron flow from the analyte solution to the MWCNT-coated GCE electrode surface. Adsorption of the nanocomposite material onto the GCE surface occurs via strong electrostatic interactions, including ionic and hydrogen bond formations. During the adsorption-controlled oxidation process of the axitinib, the electrons are transferred via the highest occupied molecular orbital (HOMO) localized on the iron oxide moiety to the lowest unoccupied molecular orbital (LUMO) of the MWCNT/GCE surface.

6.
J Pharm Biomed Anal ; 209: 114490, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34875572

RESUMEN

Pemetrexed is a well-known and widely used antineoplastic drug under the category of cytotoxic, folate anti-metabolites that is used in chemotherapeutic treatments, especially in malignant mesothelioma and non-small cell lung carcinoma. Here, the binding mechanism and interactions of Pemetrexed with double strain fish sperm deoxyribonucleic acid (dsDNA) were studied thoroughly both experimentally and theoretically, using multi-spectroscopic techniques and molecular docking simulations. Our ultimate goal is to understand better the potential of such antineoplastic drugs and, hence, to design drugs with high dsDNA binding affinities and fewer adverse effects. We employed several techniques yielding different but complementary results such as UV, fluorescence, thermal denaturation, electrochemical and viscosity, and molecular docking studies under physiological conditions. Our results revealed that the Pemetrexed binds fairly strongly to dsDNA's minor groove through hydrogen bond interactions with the mostly adenine and guanine bases via its p-carbamide and p-carboxylic groups. MD simulations of the drug-dsDNA complex were followed for 50 ns to confirm that interaction is stable and robust electrostatic interactions were due to hydrogen bonding mostly with the adenine and guanine nucleotides in the minor groove.


Asunto(s)
ADN , Animales , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Pemetrexed , Análisis Espectral
7.
ACS Omega ; 6(8): 5124-5137, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33681554

RESUMEN

DNA binding investigations are critical for designing better pharmaceutical compounds since the binding of a compound to dsDNA in the minor groove is critical in drug discovery. Although only one in vitro study on the DNA binding mode of apigenin (APG) has been conducted, there have been no electrochemical and theoretical studies reported. We hereby report the mechanism of binding interaction of APG and a new class of sulfonamide-modified flavonoids, apigenin disulfonamide (ADSAM) and apigenin trisulfonamide (ATSAM), with deoxyribonucleic acid (DNA). This study was conducted using multispectroscopic instrumentation techniques, which include UV-vis absorption, thermal denaturation, fluorescence, and Fourier transform infrared (FTIR) spectroscopy, and electrochemical and viscosity measurement methods. Also, molecular docking studies were conducted at room temperature under physiological conditions (pH 7.4). The molecular docking studies showed that, in all cases, the lowest energy docking poses bind to the minor groove of DNA and the apigenin-DNA complex was stabilized by several hydrogen bonds. Also, π-sulfur interactions played a role in the stabilization of the ADSAM-DNA and ATSAM-DNA complexes. The binding affinities of the lowest energy docking pose (schematic diagram of table of content (TOC)) of APG-DNA, ADSAM-DNA, and ATSAM-DNA complexes were found to be -8.2, -8.5, and -8.4 kcal mol-1, respectively. The electrochemical binding constants K b were determined to be (1.05 × 105) ± 0.04, (0.47 × 105) ± 0.02, and (8.13 × 105) ± 0.03 for APG, ADSAM, and ATSAM, respectively (all of the tests were run in triplicate and expressed as the mean and standard deviation (SD)). The K b constants calculated for APG, ADSAM, and ATSAM are in harmony for all techniques. As a result of the incorporation of dimethylsulfamate groups into the APG structure, in the ADSAM-dsDNA and ATSAM-dsDNA complexes, in addition to hydrogen bonds, π-sulfur interactions have also contributed to the stabilization of the ligand-DNA complexes. This work provides new insights that could lead to the development of prospective drugs and vaccines.

8.
J Pharm Biomed Anal ; 179: 112994, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31791837

RESUMEN

Fludarabine is a purine derivative, anti-neoplastic drug and is still being used in the treatments of chronic lymphocytic leukemia, small lymphocytic lymphoma, acute myeloid leukemia, Non-Hodgkin's lymphoma. It achieves its function by interacting with DNA. Therefore, the binding interactions of such drugs with deoxyribonucleic acid (DNA) is an important subject for pharmaceutical and biochemical studies aiming at designing better DNA binding drugs. Although DNA binding mode of some of the anti-neoplastic drugs has been studied, DNA interaction of Fludarabine has not been explored yet. For this reason, this work has been dedicated to deciphering the experimental and theoretical investigation of Fludarabine binding mechanism via multispectroscopic techniques including UV absorption spectroscopy, thermal denaturation, fluorescence and FTIR spectroscopy, electrochemical and viscosity measurement methods as well as with molecular docking studies under physiological conditions. We observed in the lowest energy docking poses that Fludarabine binds to DNA via major groove binding mode. The nonplanar and extended structure and hydrogen bonding interactions of Fludarabine with the Adenine-Thymine base-pair played a very decisive role in the binding mode as supported by the experimental results.


Asunto(s)
Vidarabina/análogos & derivados , Sitios de Unión , ADN , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Vidarabina/química , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA