Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(39): 52306-52325, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39143385

RESUMEN

Potentially toxic elements (PTEs), especially arsenic in drinking water, pose significant global health risks, including cancer. This study evaluates the groundwater quality in Giresun province on the Black Sea coast of Türkiye by analyzing twelve groundwater resources. The mean concentrations of macronutrients (mg/L) were: Ca (10.53 ± 6.63), Na (6.81 ± 3.47), Mg (3.39 ± 2.27), and K (2.05 ± 1.10). The mean levels of PTEs (µg/L) were: Al (40.02 ± 15.45), Fe (17.65 ± 14.35), Zn (5.63 ± 2.59), V (4.74 ± 5.85), Cu (1.57 ± 0.81), Mn (1.02 ± 0.76), As (0.93 ± 0.73), Cr (0.75 ± 0.57), Ni (0.41 ± 0.18), Pb (0.36 ± 0.23), and Cd (0.10 ± 0.05). All PTE levels complied with WHO drinking water safety guidelines, and overall water quality was excellent. The heavy metal evaluation index (HEI < 10) and heavy metal pollution index (HPI < 45) indicate low pollution levels across all stations. Irrigation water quality was largely adequate, as shown by the magnesium hazard (MH), sodium adsorption ratio (SAR), Na%, and Kelly's ratio (KR). The total hazard index (THI) values consistently remained below 1, indicating no non-carcinogenic health risks. However, at station 10 (city center), the cancer risk (CR) for adults due to arsenic was slightly above the threshold (1.44E-04). Using principal component analysis (PCA), positive matrix factorization (PMF), and geographic information system (GIS) mapping, the study determined that most PTEs originated from natural geological formations or a combination of natural and human sources, with minimal impact from human activities. These findings highlight the safety and reliability of the groundwater sources studied, emphasizing their potential as a long-term, safe water supply for nearby populations.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Metales Pesados , Contaminantes Químicos del Agua , Calidad del Agua , Agua Subterránea/química , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Mar Negro , Humanos , Agua Potable/química , Arsénico/análisis
2.
Ann Pharm Fr ; 82(1): 72-83, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37567559

RESUMEN

Nitrosamines (NAs) are molecules that include the nitroso functional group. In 2018, the US Food and Drug Administration (FDA) received its first report of NAs in pharmaceuticals. The fact that NA impurities are likely human carcinogens is relevant to these compounds. Furthermore, prolonged exposure to NA contaminants above safe limits may raise the risk of cancer. The goal of this article was to assess the amounts of six different NAs in Sartan group medicines purchased from formal pharmacies in Istanbul, Türkiye, using a validated LC-MS/MS assay. An LC-MS/MS-based analytical assay was undertaken. The separation was performed with a HR ODS 150mm×3.0mm and 5-analytical columns, providing effective separation of major peaks from NA impurities. In mobile phase A, formic acid was 0.10% in water, while in mobile phase B, formic acid was 0.10% in methanol. The flow rate was 0.4mL/minute, and the total runtime was 18minutes with the gradient elution mode. The validation was conducted in line with ISO/IEC 17025 requirements. Up to 100µg/L, linearity was determined using correlation coefficients (r2>0.995) for all NAs. The limit of quantification values for all NAs analyses were below 1.0µg/L. The mean recovery value obtained during the spike experiment was 95.18%, demonstrating the accuracy of the procedure. In addition, the accuracy was shown by a certified reference analysis, which yielded relative standard deviation and relative error values of 1.82% and 3.34%, respectively. During the intermediate precision testing, bias and relative standard deviation were 0.96 and 2.87%, respectively. Of the 75 study samples involving Sartan group medical products, no nitrosamine impurities were detected, demonstrating that pharmaceutical companies have adequate medication safety precautions in place in accordance with FDA and European Medicines Agency (EMA) regulations published to prevent NA contaminants in human medicinal products.


Asunto(s)
Nitrosaminas , Humanos , Bloqueadores del Receptor Tipo 1 de Angiotensina II , Cromatografía Liquida/métodos , Cromatografía Líquida con Espectrometría de Masas , Turquía , Espectrometría de Masas en Tándem/métodos , Preparaciones Farmacéuticas , Cromatografía Líquida de Alta Presión/métodos
3.
J Mol Graph Model ; 122: 108485, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084666

RESUMEN

In this study, theoretically designed D-π-A derivatives containing different π-subunits as linkers were investigated to enlighten their potential applicability in photovoltaic applications. For this aim, we first focused on clarifying the effect of tailored π-linker scaffolds on the frontier orbital energies of the investigated photosensitizers. In the concomitant step, global descriptors, TiO2 adsorption, maximum absorbance wavelength, light-harvesting efficiency (LHE), energy conversion efficiency (η), short circuit current density (JSC), open circuit photovoltage (VOC), fill factor (FF), and reorganization energy (λe, λh, λT) values, electron density differentiation maps (EDDM), transition density matrices (TDM), fragmental contributions on electron-hole overlap were investigated in detail. Based on the trend of the calculated properties, 2,3-dimethylthieno [3,4-b]pyrazine (D-Ɛ3-δn-A; n = 1-3) and 5-isobutyl-10,11-dimethyl-10,11-dihydro-5H-pyrrolo [3,4-e]thieno [2',3':4,5]pyrrolo [3,2-g]thieno [3,2-b]indole (D-Ɛ6-δn-A; n = 1-3) bearing molecules were identified as the best-suited and improved dye candidates for DSSC applications. Following the prediction of photovoltaic properties for the pristine dye molecules, our consecutive efforts have contributed to a similar calculation protocol comprising DFT and subsequent TD-DFT computations for the D-Ɛn-δn-A@Ti5O10 clusters to elucidate the interaction of the investigated photosensitizers with the semiconductor layer (TiO2).


Asunto(s)
Epiclorhidrina , Fármacos Fotosensibilizantes , Adsorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA