Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 18(4): 84-96, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28574192

RESUMEN

PURPOSE: Stereotactic body radiation therapy (SBRT) allows for high radiation doses to be delivered to the pancreatic tumors with limited toxicity. Nevertheless, the respiratory motion of the pancreas introduces major uncertainty during SBRT. Ultrasound imaging is a non-ionizing, non-invasive, and real-time technique for intrafraction monitoring. A configuration is not available to place the ultrasound probe during pancreas SBRT for monitoring. METHODS AND MATERIALS: An arm-bridge system was designed and built. A CT scan of the bridge-held ultrasound probe was acquired and fused to ten previously treated pancreatic SBRT patient CTs as virtual simulation CTs. Both step-and-shoot intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) planning were performed on virtual simulation CT. The accuracy of our tracking algorithm was evaluated by programmed motion phantom with simulated breath-hold 3D movement. An IRB-approved volunteer study was also performed to evaluate feasibility of system setup. Three healthy subjects underwent the same patient setup required for pancreas SBRT with active breath control (ABC). 4D ultrasound images were acquired for monitoring. Ten breath-hold cycles were monitored for both phantom and volunteers. For the phantom study, the target motion tracked by ultrasound was compared with motion tracked by the infrared camera. For the volunteer study, the reproducibility of ABC breath-hold was assessed. RESULTS: The volunteer study results showed that the arm-bridge system allows placement of an ultrasound probe. The ultrasound monitoring showed less than 2 mm reproducibility of ABC breath-hold in healthy volunteers. The phantom monitoring accuracy is 0.14 ± 0.08 mm, 0.04 ± 0.1 mm, and 0.25 ± 0.09 mm in three directions. On dosimetry part, 100% of virtual simulation plans passed protocol criteria. CONCLUSIONS: Our ultrasound system can be potentially used for real-time monitoring during pancreas SBRT without compromising planning quality. The phantom study showed high monitoring accuracy of the system, and the volunteer study showed feasibility of the clinical workflow.


Asunto(s)
Movimientos de los Órganos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/radioterapia , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador , Respiración , Ultrasonografía Intervencional/métodos , Algoritmos , Estudios de Factibilidad , Humanos , Fantasmas de Imagen , Radioterapia de Intensidad Modulada , Reproducibilidad de los Resultados
2.
IEEE Trans Biomed Eng ; 63(7): 1517-24, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26552071

RESUMEN

OBJECTIVE: Acoustic radiation force (ARF)-based approaches to measure tissue elasticity require transmission of a focused high-energy acoustic pulse from a stationary ultrasound probe and ultrasound-based tracking of the resulting tissue displacements to obtain stiffness images or shear wave speed estimates. The method has established benefits in biomedical applications such as tumor detection and tissue fibrosis staging. One limitation, however, is the dependence on applied probe pressure, which is difficult to control manually and prohibits standardization of quantitative measurements. To overcome this limitation, we built a robot prototype that controls probe contact forces for shear wave speed quantification. METHODS: The robot was evaluated with controlled force increments applied to a tissue-mimicking phantom and in vivo abdominal tissue from three human volunteers. RESULTS: The root-mean-square error between the desired and measured forces was 0.07 N in the phantom and higher for the fatty layer of in vivo abdominal tissue. The mean shear wave speeds increased from 3.7 to 4.5 m/s in the phantom and 1.0 to 3.0 m/s in the in vivo fat for compressive forces ranging from 2.5 to 30 N. The standard deviation of shear wave speeds obtained with the robotic approach were low in most cases ( 0.2 m/s) and comparable to that obtained with a semiquantitative landmark-based method. CONCLUSION: Results are promising for the introduction of robotic systems to control the applied probe pressure for ARF-based measurements of tissue elasticity. SIGNIFICANCE: This approach has potential benefits in longitudinal studies of disease progression, comparative studies between patients, and large-scale multidimensional elasticity imaging.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Robótica/métodos , Abdomen/diagnóstico por imagen , Abdomen/fisiología , Fenómenos Biomecánicos , Diagnóstico por Imagen de Elasticidad/instrumentación , Diseño de Equipo , Humanos , Masculino , Fantasmas de Imagen , Robótica/instrumentación
3.
Proc Int Conf Adv Robot ; 2015: 53-59, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27099871

RESUMEN

We are developing a cooperatively-controlled robot system in which a clinician and robot share control of a 3D ultrasound (US) probe. The goals of the system are to provide guidance for patient setup and real-time target monitoring during fractionated radiotherapy. Currently, there is limited use of realtime US image feedback during radiotherapy for lower abdominal organs and it has not yet been clinically applied for upper abdominal organs. One challenge is that placing an US probe on the patient produces tissue deformation around the target organ, leading to displacement of the target. Our solution is to perform treatment planning on the deformed organ and then to reproduce this deformation during radiotherapy. We therefore introduce a robot system to hold the US probe on the patient. In order to create a consistent deformation, the system records the robot position, contact force, and reference US image during simulation and then introduces virtual constraints (soft virtual fixtures) to guide the clinician to correctly place the probe during the fractionated treatments. Because the robot is under-actuated (5 motorized and 6 passive degrees-of-freedom), the guidance also involves a graphical user interface (adjustment GUI) to achieve the desired probe orientation. This paper presents the integrated system, a proposed clinical workflow, the results of an initial in-vivo canine study with a 3-DOF robot, and the results of phantom experiments with an improved 5-DOF robotic system. The results suggest that the guidance may enable the clinician to more consistently and accurately place the US probe.

4.
J Med Imaging (Bellingham) ; 1(2): 025001, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26158038

RESUMEN

Ultrasound can provide real-time image guidance of radiation therapy, but the probe-induced tissue deformations cause local deviations from the treatment plan. If placed during treatment planning, the probe causes streak artifacts in required computed tomography (CT) images. To overcome these challenges, we propose robot-assisted placement of an ultrasound probe, followed by replacement with a geometrically identical, CT-compatible model probe. In vivo reproducibility was investigated by implanting a canine prostate, liver, and pancreas with three 2.38-mm spherical markers in each organ. The real probe was placed to visualize the markers and subsequently replaced with the model probe. Each probe was automatically removed and returned to the same position or force. Under position control, the median three-dimensional reproducibility of marker positions was 0.6 to 0.7 mm, 0.3 to 0.6 mm, and 1.1 to 1.6 mm in the prostate, liver, and pancreas, respectively. Reproducibility was worse under force control. Probe substitution errors were smallest for the prostate (0.2 to 0.6 mm) and larger for the liver and pancreas (4.1 to 6.3 mm), where force control generally produced larger errors than position control. Results indicate that position control is better than force control for this application, and the robotic approach has potential, particularly for relatively constrained organs and reproducibility errors that are smaller than established treatment margins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA