Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37445146

RESUMEN

Shape memory alloys (SMAs) are gaining popularity in the fields of automotive and aerospace engineering due to their unique thermomechanical properties. This paper proposes a numerical implementation of a comprehensive constitutive model for simulating the thermomechanical behavior of shape memory alloys, with temperature and strain as control variables to adjust the shape memory effect and super elasticity effect of the material. By implementing this model as a user subroutine in the FE code Abaqus/Standard, it becomes possible to account for variations in material properties in complex components made of shape memory alloys. To demonstrate the potential of the proposed model, a skid plate system design is presented. The system uses bistable actuators with shape memory alloy springs to trigger plate movement. The kinematics and dynamics of the system are simulated, and effective loads are generated by the shape memory alloy state change due to the real temperature distribution in the material, which depends on the springs' geometrical parameters. Finally, the performance of the actuator in switching between different configurations and maintaining stability in a specific configuration is assessed. The study highlights the promising potential of shape memory alloys in engineering applications and demonstrates the ability to use them in complex systems with accurate simulations.

2.
Polymers (Basel) ; 13(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34883568

RESUMEN

A preliminary design of customized antibiotic-loaded poly-methyl-methacrylate (ALPMMA) spacer characterized by an appropriate footprint according to the specific patient's anatomy and a reliable mechanical response to severe functional loads (i.e., level walking and 45° bent knee) is reported. The targeted virtual prototyping process takes origin from a novel patented 3D geometrical conceptualization characterized by added customization features and it is validated by a preliminary FEM-based analysis. Mechanical and thermomechanical properties of the antibiotic-doped orthopedic PMMA cement, which will be used for the future prototype manufacturing, were measured experimentally by testing samples taken during a real day-running orthopedic surgery and manufactured according to the surgeon protocol. FEM analysis results indicate that small area is subjected to intensive stresses, validating the proposed geometry from the mechanical point of view, under the two loading scenarios, moreover the value of safety margins results positive, and this is representative of the lower stress magnitude compared to the critical material limits. The experimental data confirm that the presence of antibiotic will last during the surgeon period moreover, the temperature dependent modulus of the bone cement is slightly affected by the body range temperature whereas it will drastically drop for higher temperature out the range of interest. A complete customization, according to a patient anatomy, and the corresponding real prototype spacer will be manufactured by 3D printing techniques, and it will be validated by destructive testing during the second stage of this activity before commercialization.

3.
J Pers Med ; 11(10)2021 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-34683181

RESUMEN

Peri-prosthetic joint infections (PJIs) dramatically affect human health, as they are associated with high morbidity and mortality rates. Two-stage revision arthroplasty is currently the gold standard treatment for PJI and consists of infected implant removal, an accurate debridement, and placement of antimicrobial impregnated poly-methyl-metha-acrylate (PMMA) spacer. The use of antibiotic-loaded PMMA (ALPMMA) spacers have showed a success rate that ranges from 85% to 100%. ALPMMA spacers, currently available on the market, demonstrate a series of disadvantages, closely linked to a low propensity to customize, seen as the ability to adapt to the patients' anatomical characteristics, with consequential increase of surgical complexity, surgery duration, and post-operative complications. Conventionally, ALPMMA spacers are available only in three or four standard sizes, with the impossibility of guaranteeing the perfect matching of ALPMMA spacers with residual bone (no further bone loss) and gap filling. In this paper, a 3D model of an ALPMMA spacer is introduced to evaluate the cause- effect link between the geometric characteristics and the correlated clinical improvements. The result is a multivariable-oriented design able to effectively manage the size, alignment, stability, and the patients' anatomical matching. The preliminary numerical results, obtained by using an "ad hoc" 3D virtual planning simulator, clearly point out that to restore the joint line, the mechanical and rotational alignment and the surgeon's control on the thicknesses (distal and posterior thicknesses) of the ALPMMA spacer is mandatory. The numerical simulations campaign involved nineteen patients grouped in three different scenarios (Case N° 1, Case N° 2 and Case N° 3) whose 3D bone models were obtained through an appropriate data management strategy. Each scenario is characterized by a different incidence rate. In particular, the observed rates of occurrence are, respectively, equal to 17% (Case N° 1), 74% (Case N° 2), and 10% (Case N° 3).

4.
Sensors (Basel) ; 21(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34450947

RESUMEN

In this work, an analytical procedure for the preliminary design of shape memory alloy spring-based actuators is investigated. Two static analytical models are considered and interconnected in the frame of the proposed procedure. The first model, based on the works from An, is able to determine the material properties of the SMA components by means of experimental test data and is able to size the SMA component based on the requirements of the system. The second model, based on a work from Spaggiari, helps to design and size an antagonist spring system that allows one to obtain the geometric characteristics of springs (SMA and bias) and the mechanical characteristics of the entire actuator. The combined use of these models allows one to define and size a complex SMA actuator based on the actuation load requirements. To validate the design procedure, static experimental tests have been performed with the entire SMA actuator.


Asunto(s)
Aleaciones , Aleaciones con Memoria de Forma , Diseño de Equipo
5.
Materials (Basel) ; 14(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204337

RESUMEN

Composite materials, like metals, are subject to fatigue effects, representing one of the main causes for component collapse in carbon fiber-reinforced polymers. Indeed, when subject to low stress cyclic loading, carbon fiber-reinforced polymers exhibit gradual degradation of the mechanical properties. The numerical simulation of this phenomenon, which can strongly reduce time and costs to market, can be extremely expensive in terms of computational effort since a very high number of static analyses need to be run to take into account the real damage propagation due the fatigue effects. In this paper, a novel cycle jump strategy, named Smart Cycle strategy, is introduced in the numerical model to avoid the simulation of every single cycle and save computational resources. This cycle jump strategy can be seen as an enhancement of the empirical model proposed by Shokrieh and Lessard for the evaluation of the fatigue-induced strength and stiffness degradation. Indeed, the Smart Cycle allows quickly obtaining a preliminary assessment of the fatigue behavior of composite structures. It is based on the hypothesis that the stress redistribution, due to the fatigue-induced gradual degradation of the material properties, can be neglected until sudden fiber and/or matrix damage is verified at element/lamina level. The numerical procedure has been implemented in the commercial finite element code ANSYS MECHANICAL, by means of Ansys Parametric Design Languages (APDL). Briefly, the Smart Cycle routine is able to predict cycles where fatigue failure criteria are likely to be satisfied and to limit the numerical simulation to these cycles where a consistent damage propagation in terms of fiber and matrix breakage is expected. The proposed numerical strategy was preliminarily validated, in the frame of this research study, on 30° fiber-oriented unidirectional coupons subjected to tensile-tensile fatigue loading conditions. The numerical results were compared with literature experimental data in terms of number of cycles at failure for different percentage of the static strength. Lastly, in order to assess its potential in terms of computational time saving on more complex structures and different loading conditions, the proposed numerical approach was used to investigate the fatigue behavior of a cross-ply open-hole composite panel under tension-tension fatigue loading conditions.

6.
Materials (Basel) ; 13(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823880

RESUMEN

This work is focused on the investigation of the structural behavior of a composite floor beam, located in the cargo zone of a civil aircraft, subjected to cyclical low-frequency compressive loads with different amplitudes. In the first stage, the numerical models able to correctly simulate the investigated phenomenon have been defined. Different analyses have been performed, aimed to an exhaustive evaluation of the structural behavior of the test article. In particular, implicit and explicit analyses have been considered to preliminary assess the capabilities of the numerical model. Then, explicit non-linear analyses under time-dependent loads have been considered, to predict the behavior of the composite structure under cyclic loading conditions. According to the present investigation, low-frequency cyclic loads with peak values lower than the static buckling load value are not capable of triggering significant instability.

7.
Polymers (Basel) ; 12(3)2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138254

RESUMEN

Increasing the Mode I inter-laminar fracture toughness of composite laminates can contribute to slowing down delamination growth phenomena, which can be considered one of the most critical damage mechanisms in composite structures. Actually, the Mode I interlaminar fracture toughness (GIc) in fibre-reinforced composite materials has been found to considerably increase with the crack length when the fibre bridging phenomenon takes place. Hence, in this paper, the fibre bridging phenomenon has been considered as a natural toughening mechanism able to replace embedded metallic or composite reinforcements, currently used to increase tolerance to inter-laminar damage. An experimental/numerical study on the influence of delamination growth on the compressive behaviour of fibre-reinforced composites characterised by high sensitivity to the fibre bridging phenomenon has been performed. Coupons, made of material systems characterised by a variable toughness related to a high sensitivity to the fibre bridging phenomenon and containing artificial through-the-width delaminations, were subjected to a compressive mechanical test and compared to coupons made of standard material system with constant toughness. Out-of-plane displacements and strains were monitored during the compression test by means of strain gauges and digital image correlation to assess the influence of fibre bridging on delamination buckling, delamination growth and on the global buckling of the specimens, including buckling shape changes. Experimental data were combined with a numerical study, performed by means of a virtual crack closure technique based procedure, named SMart Time XB - Fibre Bridging (SMXB-FB), able to mimic the crack bridging effect on the toughness properties of the material system. The combination of numerical results and experimental data has allowed the deformations and the buckling shape changes to be correlated to the onset and evolution of damage and, hence, contributes to improving the knowledge on the interaction of the failure mechanisms in the investigated composite specimens.

8.
Materials (Basel) ; 12(15)2019 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-31357723

RESUMEN

In this paper, a research activity, focused on the investigation of new reinforcements able to improve the toughness of composite materials systems, is introduced. The overall aim is to delay the delamination propagation and, consequently, to increase the carrying load capability of composite structures by exploiting the fiber bridging effects. Indeed, the influence of fiber bridging related Mode I fracture toughness (GIc) values on the onset and propagation of delaminations in stiffened composite panels, under three-point bending loading conditions, have been experimentally and numerically studied. The investigated stiffened panels have been manufactured by using epoxy resin/carbon fibers material systems, characterized by different GIc values, which can be associated with the material fiber bridging sensitivity. Experimental data, in terms of load and delaminated area as a function of the out-of-plane displacements, have been obtained for each tested sample. Non-Destructive Inspection (NDI) has been performed to identify the debonding extension and position. To completely understand the evolution of the delamination and its dependence on the material characteristics, experiments have been numerically simulated using a newly developed robust numerical procedure for the delamination growth simulation, able to take into account the influence of the fracture toughness changes, associated with the materials' fiber bridging sensitivity. The combined use of numerical results and experimental data has allowed introducing interesting considerations of the capability of the fiber bridging to substantially slow down the evolution of the debonding between skin and reinforcements in composite stiffened panels.

9.
Materials (Basel) ; 12(11)2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31181675

RESUMEN

In this paper, the skin-stringer separation phenomenon that occurs in stiffened composite panels under compression is numerically studied. Since the mode I fracture toughness and, consequently, the skin-stringer separation can be influenced by the fibre bridging phenomenon at the skin-stringer interface, in this study, comparisons among three different material systems with different fibre bridging sensitivities have been carried out. Indeed, a reference material system has been compared, in terms of toughness performance, against two materials with different degrees of sensitivity to fibre bridging. A robust numerical procedure for the delamination assessment has been used to mimic the skin-stringer separation. When analysing the global compressive behaviour of the stiffened panel, intra-laminar damages have been considered in conjunction with skin-stringer debonding to evaluate the effect of the fibre and matrix breakage on the separation between the skin and the stringer for the three analysed material systems. The latter are characterised by different toughness characteristics and fibre bridging sensitivities, resulting in a different material toughness.

10.
Materials (Basel) ; 12(5)2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823380

RESUMEN

The development of structures able to autonomously change their characteristics in response to an external simulation is considered a promising research field. Indeed, these structures, called smart structures, can be adopted to improve the aerodynamic performance of air and land vehicles. In this work, an overview and future applications of Shape Memory Alloys (SMA)-based smart structures are presented. The use of SMA materials seems to be very promising in several engineering sectors. Advanced SMA-based devices, designed to improve the aerodynamic performance of vehicles by modifying the shape of the spoiler and the rear upper panel, are briefly introduced and discussed in this paper. Indeed, a simplified model simulating the SMA mechanical behavior has been considered to demonstrate the feasibility of the introduced smart structures for adaptive aerodynamic applications. Numerical simulations of the investigated structures are provided as a justification of the proposed designs.

11.
Materials (Basel) ; 12(1)2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30621252

RESUMEN

In this work, the behaviour of thermoplastic composites and Shape Memory Alloy Hybrid Composites (SMAHCs) for aeronautical applications is analysed and compared by means of findings from numerical analyses and experimental tests. At first, experimental tests are performed by using a drop tower facility on both carbon fibre reinforced plastic samples and Carbon Fibre Reinforced Plastic (CFRP) samples hybridized with shape memory alloy materials. The materials properties and the different lower velocity impacts behaviours are simulated and validated by means of numerical models discretized in LS-Dyna explicit solver. For both configurations, the deformation mechanism for low intensity impacts, the absorbed energy, and the effect of rebounding upon the velocity change, and hence the amount of force, are investigated. Then, a configuration is prepared to withstand higher-energy impacts. Finally, the numerical analysis is extended for an innovative layup adapted on an aeronautical structure, which is subjected to the bird-strike phenomenon at 180 m/s and with an impacting mass of 1.8 kg according to the airworthiness requirements. In this study, SMAHCs are used to improve the composite impact response and energy absorption thanks to the superelastic effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA