Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Phys Rev E ; 96(5-1): 052141, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29347707

RESUMEN

Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the nonequilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(2 Pt 1): 021301, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21405837

RESUMEN

We investigate a vibrated granular system composed of millimeter-size glass beads. When the system is submitted to a perturbation with decreasing intensity, below the fluidization limit, it evolves in a way similar to glass-forming liquids until it reaches an amorphous jammed state. This jamming transition is observed by the means of an immersed oscillator, either in the free or forced mode, while the granular medium is submitted to an external perturbation at a fixed frequency or within a frequency band. The complex susceptibility of the oscillator is measured as a function of the probe forcing frequency or as a function of the perturbation intensity. Data show that the jamming dynamics is "activated," similarly to thermal systems. The empirical control parameter is found proportional to the square root of the vibration intensity and inversely proportional to the vibration frequency. In the case of broadband external vibration, the average frequency of the power spectrum has to be considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA