Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 16130, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997398

RESUMEN

The mechanism of selectivity in ion channels is still an open question in biology. Recent studies suggest that the selectivity filter may exhibit quantum coherence, which could help explain how ions are selected and conducted. However, environmental noise causes decoherence and loss of quantum effects. It is hoped that the effect of classical noise on ion channels can be modeled using the framework provided by quantum decoherence theory. In this paper, the behavior of the ion channel system was simulated using two models: the Spin-Boson model and the stochastic Hamiltonian model under classical noise. Additionally, using a different approach, the system's evolution was modeled as a two-level Spin-Boson model with tunneling, interacting with a bath of harmonic oscillators, based on decoherence theory. We investigated under what conditions the decoherence model approaches and deviates from the noise model. Specifically, we examined Gaussian noise and Ornstein-Uhlenbeck noise in our model. Gaussian noise shows a very good agreement with the decoherence model. By examining the results, it was found that the Spin-Boson model at a high hopping rate of potassium ions can simulate the behavior of the system in the classical noise approach for Gaussian noise.

2.
Sci Rep ; 12(1): 9237, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654822

RESUMEN

Recently, it has been suggested that ion channel selectivity filter may exhibit quantum coherence, which may be appropriate to explain ion selection and conduction processes. Potassium channels play a vital role in many physiological processes. One of their main physiological functions is the efficient and highly selective transfer of K+ ions through the membranes into the cells. To do this, ion channels must be highly selective, allowing only certain ions to pass through the membrane, while preventing the others. The present research is an attempt to investigate the relationship between hopping rate and maintaining coherence in ion channels. Using the Lindblad equation to describe a three-level system, the results in different quantum regimes are examined. We studied the distillable coherence and the second order coherence function of the system. The oscillation of distillable coherence from zero, after the decoherence time, and also the behavior of the coherence function clearly show the point that the system is coherent in ion channels with high throughput rates.


Asunto(s)
Canales Iónicos , Canales de Potasio , Canales Iónicos/fisiología , Iones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA