Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; : 1-19, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248695

RESUMEN

Lemna aequinoctialis (duckweed) is the smallest and fast-growing aquatic plant species producing protein-rich biomass with high protein nutritional value, phytoremediation capacity, and nutrient removal from wastewater. Duckweed may also be used as a new potential bioreactor for biological products, such as vaccines, antibodies, and pharmaceutical proteins. Based upon the potential importanc of L. aequinoctialis in phytoremediation and as a bioreactor the aim of this study was to (1) characterize the chemical and nutritional profiles of L. aequinoctialis biomass utilizing an integrated multi-trophic aquaculture system (IMTA) and a pond, and (2) investigate the cytotoxic potential of different concentrations of organic extracts and fractions using the MTT bioassay. EDXRF and ICP-MS analyses indicated the presence of trace elements in lower amounts in relation to the biomass of L. aequinoctialis in the lagoon, emphasizing the importance of plant inclusion management to reduce bioaccumulation of these elements. Analysis of mineral profiles, fatty acids, and amino acids indicated a satisfactory nutritional composition for the use of biomass as a bioproduct. Pigment analysis showed a high concentration of carotenoids, especially astaxanthin. After standardizing the controls, the MTT cell viability test was carried out utilizing rat hepatoma cell line (HTC), which are metabolizing cells that were treated with aqueous or ethanolic extracts and the dichloromethane, ethyl acetate, and methanol fractions at different concentrations. No apparent cytotoxic potential was observed following treatments, since there was no significant reduction in cell viability. Therefore, this study provides information regarding the biomass of L. aequinoctialis derived from the IMTA system, which might support further research into the application of this species as a bioproduct.

2.
Pharmaceuticals (Basel) ; 11(4)2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30477180

RESUMEN

Cereus jamacaru D.C. (mandacaru) is a cactus used as food and in the traditional medicine. In the present study, hydroalcoholic extract of C. jamacaru was evaluated for its chemical composition, antioxidant activity, cytotoxic and anti-cytotoxic effects in human lymphocytes and sarcoma 180 cells in vitro by MTT assay and antitumoral, mutagenic and cytotoxic effects on mice sarcoma-induced in vivo. Phytochemical characterization showed positive reactions for coumarin, flavanol and tyramine and total flavonoid content of 0.51 µg/mL. C. jamacaru showed antioxidant activity following DPPH (EC50 = 427.74 µg/mL), ABTS (EC50 = 270.57 µg/mL) and Fe2+ chelating ions assays (EC50 = 41.18 µg/mL). C. jamacaru induced significant decrease of sarcoma 180 viability at 24 h and 48 h of treatment, did not induce cytotoxicity in human lymphocytes and inhibits the cytotoxicity of cisplatin in vitro. Following in vivo assays, C. jamacaru promoted tumor reduction (86.07% of tumor inhibition), without inducing mutagenic or cytotoxic damage on mice blood cells. We propose that phenolic and alkaloid compounds in the extract are related to antioxidant activity, increasing its ability in metal chelating activity and promoting anti-cytotoxic activity against cisplatin, as well as these compounds may act on the cell cycle of the tumor cells in vitro and in vivo, leading to anticancer effects and tumor reduction.

3.
Biomed Res Int ; 2013: 943520, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24490174

RESUMEN

The neuroprotection induced by Hypericum brasiliense Choisy extract (HBE) and its main active polyphenol compound quercetin, against Crotalus durissus terrificus (Cdt) venom and crotoxin and crotamine, was enquired at both central and peripheral mammal nervous system. Cdt venom (10 µg/mL) or crotoxin (1 µg/mL) incubated at mouse phrenic nerve-diaphragm preparation (PND) induced an irreversible and complete neuromuscular blockade, respectively. Crotamine (1 µg/mL) only induced an increase of muscle strength at PND preparations. At mouse brain slices, Cdt venom (1, 5, and 10 µg/mL) decreased cell viability. HBE (100 µg/mL) inhibited significantly the facilitatory action of crotamine (1 µg/mL) and was partially active against the neuromuscular blockade of crotoxin (1 µg/mL) (data not shown). Quercetin (10 µg/mL) mimicked the neuromuscular protection of HBE (100 µg/mL), by inhibiting almost completely the neurotoxic effect induced by crotoxin (1 µg/mL) and crotamine (1 µg/mL). HBE (100 µg/mL) and quercetin (10 µg/mL) also increased cell viability in mice brain slices. Quercetin (10 µg/mL) was more effective than HBE (100 µg/mL) in counteracting the cell lysis induced by Cdt venom (1 and 10 µg/mL, resp.). These results and a further phytochemical and toxicological investigations could open new perspectives towards therapeutic use of Hypericum brasiliense standardized extract and quercetin, especially to counteract the neurotoxic effect induced by snake neurotoxic venoms.


Asunto(s)
Bloqueo Neuromuscular , Fármacos Neuroprotectores/administración & dosificación , Nervio Frénico/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Venenos de Crotálidos/toxicidad , Crotoxina/toxicidad , Diafragma/efectos de los fármacos , Humanos , Hypericum/química , Ratones , Nervio Frénico/fisiopatología , Extractos Vegetales/química , Quercetina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA