Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Aging Neurosci ; 13: 708932, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185510

RESUMEN

Genetic algorithms have a proven capability to explore a large space of solutions, and deal with very large numbers of input features. We hypothesized that the application of these algorithms to 18F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) may help in diagnosis of Alzheimer's disease (AD) and Frontotemporal Dementia (FTD) by selecting the most meaningful features and automating diagnosis. We aimed to develop algorithms for the three main issues in the diagnosis: discrimination between patients with AD or FTD and healthy controls (HC), differential diagnosis between behavioral FTD (bvFTD) and AD, and differential diagnosis between primary progressive aphasia (PPA) variants. Genetic algorithms, customized with K-Nearest Neighbor and BayesNet Naives as the fitness function, were developed and compared with Principal Component Analysis (PCA). K-fold cross validation within the same sample and external validation with ADNI-3 samples were performed. External validation was performed for the algorithms distinguishing AD and HC. Our study supports the use of FDG-PET imaging, which allowed a very high accuracy rate for the diagnosis of AD, FTD, and related disorders. Genetic algorithms identified the most meaningful features with the minimum set of features, which may be relevant for automated assessment of brain FDG-PET images. Overall, our study contributes to the development of an automated, and optimized diagnosis of neurodegenerative disorders using brain metabolism.

2.
Cortex ; 119: 312-323, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31181419

RESUMEN

INTRODUCTION: Primary progressive aphasia (PPA) is a clinical syndrome of neurodegenerative origin with 3 main variants: non-fluent, semantic, and logopenic. However, there is some controversy about the existence of additional subtypes. Our aim was to study the language and cognitive features associated with a new proposed classification for PPA. MATERIAL AND METHODS: Sixty-eight patients with PPA in early stages of the disease and 20 healthy controls were assessed with a comprehensive language and cognitive protocol. They were also evaluated with 18F-FDG positron emision tomography (PET). Patients were classified according to FDG PET regional metabolism, using our previously developed algorithm based on a hierarchical agglomerative cluster analysis with Ward's linkage method. Five variants were found, with both the non-fluent and logopenic variants being split into 2 subtypes. Machine learning techniques were used to predict each variant according to language assessment results. RESULTS: Non-fluent type 1 was associated with poorer performance in repetition of sentences and reading of irregular words than non-fluent type 2. Conversely, the second group showed a higher degree of apraxia of speech. Patients with logopenic variant type 1 performed more poorly on action naming than patients with logopenic type 2. Language assessments were predictive of PET-based subtypes in 86%-89% of cases using clustering analysis and principal components analysis. CONCLUSIONS: Our study supports the existence of 5 variants of PPA. These variants show some differences in language and FDG PET imaging characteristics. Machine learning algorithms using language test data were able to predict each of the 5 PPA variants with a relatively high degree of accuracy, and enable the possibility of automated, machine-aided diagnosis of PPA variants.


Asunto(s)
Afasia Progresiva Primaria/fisiopatología , Encéfalo/fisiología , Aprendizaje Automático , Habla , Anciano , Afasia Progresiva Primaria/diagnóstico , Femenino , Humanos , Pruebas del Lenguaje , Masculino , Persona de Mediana Edad , Habla/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA