Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Geochem Health ; 44(8): 2341-2354, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34286388

RESUMEN

There are few well-established risk factors for childhood leukemias. While the frequency of childhood leukemias might be partially attributable to some diseases (accounting for a small fraction of cases) or ionizing radiation, the role of heavy metals has not been assessed. The objective of our study was to assess the potential association between levels of cadmium (Cd) and lead (PB) in soil and childhood leukemias incidence. We conducted a population-based case-control study of childhood leukaemia in Spain, covering 2897 incident cases gathered from the Spanish Registry of Childhood Tumours and including 14 Spanish Regions with a total population of 5,307,433 children (period 1996-2015). Cd and Pb bioavailable levels at every children's home address were estimated using data from the Geochemical Atlas of Spain. We used logistic regression to estimate odds ratios (ORs) and their 95% confidence intervals (95%CIs); we included as covariates: sex, rurality, employment rate and socioeconomic status. Metal levels were analysed according to two definitions: as continuous variable assuming linearity and as categorical variables to explore a potentially nonlinear association (quantiles). Increases in both Cd and Pb topsoil levels were associated with increased probability of childhood leukemias incidence. The results for the models with the continuous variables showed that a unit increase on the topsoil level was associated with an OR of 1.11 for Cd (95%CI 1.00-1.24) and an OR of 1.10 for Pb (95%CI 0.99-1.21). Our study may point towards a possible link between residential Cd and Pb topsoil levels and the probability of childhood leukemias incidence. Residing in a location with the highest concentrations of these heavy metals compared to those locations with the lowest could increase the risk around a 20%, for both Cd and Pb.


Asunto(s)
Leucemia , Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , Estudios de Casos y Controles , Niño , Monitoreo del Ambiente/métodos , Humanos , Incidencia , Plomo/análisis , Leucemia/inducido químicamente , Leucemia/epidemiología , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
2.
BMC Public Health ; 21(1): 961, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34016076

RESUMEN

BACKGROUND: On June 21st de-escalation measures and state-of-alarm ended in Spain after the COVID-19 first wave. New surveillance and control strategy was set up to detect emerging outbreaks. AIM: To detect and describe the evolution of COVID-19 clusters and cases during the 2020 summer in Spain. METHODS: A near-real time surveillance system to detect active clusters of COVID-19 was developed based on Kulldorf's prospective space-time scan statistic (STSS) to detect daily emerging active clusters. RESULTS: Analyses were performed daily during the summer 2020 (June 21st - August 31st) in Spain, showing an increase of active clusters and municipalities affected. Spread happened in the study period from a few, low-cases, regional-located clusters in June to a nationwide distribution of bigger clusters encompassing a higher average number of municipalities and total cases by end-August. CONCLUSION: STSS-based surveillance of COVID-19 can be of utility in a low-incidence scenario to help tackle emerging outbreaks that could potentially drive a widespread transmission. If that happens, spatial trends and disease distribution can be followed with this method. Finally, cluster aggregation in space and time, as observed in our results, could suggest the occurrence of community transmission.


Asunto(s)
COVID-19 , Brotes de Enfermedades/prevención & control , Humanos , Estudios Prospectivos , SARS-CoV-2 , España/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA