Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anim Sci ; 77(2): 291-9, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10100656

RESUMEN

Fall-weaned crossbred steer calves (n = 300; 184 +/- 2.9 kg) received either no implant (Control) or were implanted with Synovex-C (SC = 10 mg estradiol benzoate + 100 mg progesterone), Synovex-S (SS = 20 mg estradiol benzoate + 200 mg progesterone), or Revalor-G (RG = 8 mg estradiol-17beta + 40 mg trenbolone acetate) to determine the effects of implants on weight gain during winter grazing on dormant tallgrass prairie, subsequent grazing and finishing performance, and carcass characteristics. Steers grazed two dormant tallgrass prairie pastures from October 16, 1996, until March 29, 1997 (164 d), and received 1.36 kg/d of a 25% CP supplement that supplied 100 mg of monensin/steer. Following winter grazing, all steers were implanted with Ralgro (36 mg zeranol) and grazed a common tallgrass prairie pasture until July 17 (110 d). After summer grazing, all steers were implanted with Revalor-S (24 mg estradiol-17beta + 120 mg trenbolone acetate), and winter implant treatment groups were equally allotted to four feedlot pens. Steers were harvested November 17, 1997, after a 123-d finishing period. Daily gains during the winter grazing phase averaged .28, .32, .32, or .35 kg/d, respectively, for Control, SC, SS, or RG steers and were greater (P < .01) for implanted steers than for Controls. Summer daily gains were similar (1.05 +/- .016 kg/d; P > or = .61) for all treatment groups. Feedlot daily gains were also similar (1.67 +/- .034 kg/d; P > or = .21), with implanted steers weighing 14 kg more than Control steers (P = .05) at harvest, despite similar management during summer grazing and feedlot phases. Control steers tended (P = .06) to have lower yield grades. There were no differences (P = .99) in marbling between implanted and nonimplanted steers. Steers implanted during the wintering phase had increased skeletal and overall (P < .01) carcass maturities compared with nonimplanted steers, which resulted in more "B" and "C" maturity carcasses. Because carcass maturity score affects quality grade, the increased maturities of implanted steers resulted in a $9.04 decrease in carcass value/100 kg (P < .01) compared with Controls. The results of this study indicate that growth-promoting implants are efficacious for cattle wintered on dormant native range despite low daily gains. This increased weight is maintained through the summer grazing and feedlot phases; however, the benefit of the increased weight may be offset by decreased carcass quality grade and value due to increased carcass maturity.


Asunto(s)
Crianza de Animales Domésticos/métodos , Bovinos/crecimiento & desarrollo , Metabolismo Energético , Aumento de Peso , Anabolizantes/administración & dosificación , Anabolizantes/farmacología , Alimentación Animal , Animales , Composición Corporal/efectos de los fármacos , Combinación de Medicamentos , Metabolismo Energético/efectos de los fármacos , Estradiol/administración & dosificación , Estradiol/análogos & derivados , Estradiol/farmacología , Masculino , Progesterona/administración & dosificación , Progesterona/farmacología , Estaciones del Año , Acetato de Trembolona/administración & dosificación , Acetato de Trembolona/análogos & derivados , Acetato de Trembolona/farmacología , Aumento de Peso/efectos de los fármacos
2.
J Anim Sci ; 76(1): 275-86, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9464909

RESUMEN

Acute and chronic acidosis, conditions that follow ingestion of excessive amounts of readily fermented carbohydrate, are prominent production problems for ruminants fed diets rich in concentrate. Often occurring during adaptation to concentrate-rich diets in feedyards, chronic acidosis may continue during the feeding period. With acute acidosis, ruminal acidity and osmolality increase markedly as acids and glucose accumulate; these can damage the ruminal and intestinal wall, decrease blood pH, and cause dehydration that proves fatal. Laminitis, polioencephalomalacia, and liver abscesses often accompany acidosis. Even after animals recover from a bout of acidosis, nutrient absorption may be retarded. With chronic acidosis, feed intake typically is reduced but variable, and performance is depressed, probably due to hypertonicity of digesta. Acidosis control measures include feed additives that inhibit microbial strains that produce lactate, that stimulate activity of lactate-using bacteria or starch-engulfing ruminal protozoa, and that reduce meal size. Inoculation with microbial strains capable of preventing glucose or lactate accumulation or metabolizing lactate at a low pH should help prevent acidosis. Feeding higher amounts of dietary roughage, processing grains less thoroughly, and limiting the quantity of feed should reduce the incidence of acidosis, but these practices often depress performance and economic efficiency. Continued research concerning grain processing, dietary cation-anion balance, narrow-spectrum antibiotics, glucose or lactate utilizing microbes, and feeding management (limit or program feeding) should yield new methods for reducing the incidence of acute and chronic acidosis.


Asunto(s)
Acidosis/veterinaria , Enfermedades de los Bovinos/etiología , Enfermedades de los Bovinos/prevención & control , Acidosis/etiología , Acidosis/prevención & control , Enfermedad Aguda , Animales , Bovinos , Enfermedades de los Bovinos/metabolismo , Enfermedad Crónica , Ácidos Grasos Volátiles/metabolismo , Fermentación , Glucosa/metabolismo , Glucólisis , Concentración de Iones de Hidrógeno , Incidencia , Lactatos/metabolismo , Concentración Osmolar
3.
J Anim Sci ; 75(3): 868-79, 1997 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9078507

RESUMEN

Effects of grain species and grain processing method on DMI, rate and efficiency of gain, and feeding value for cattle fed high concentrate diets were appraised by statistically compiling results from 605 comparisons from feeding trials published in North American journals and experiment station bulletins since 1974. Metabolizable energy (ME) values for each grain and processing method were calculated by quadratic procedures from DMI and animal performance. Averaged across processing methods, ME values for corn, milo, and wheat grain (3.40, 3.22, and 3.46 Mcal/kg DM) fell within 9% of ME estimates from NRC (1996) for beef cattle. In contrast, ME values for barley and oats grain (3.55 and 3.46 Mcal/kg DM) were 24% and 17% greater than NRC (1996) estimates. Compared with the dry rolled forms, high moisture corn and milo resulted in lower ADG and DMI. Compared with dry rolling, either steam rolling or flaking of corn, milo, and wheat decreased DMI without decreasing ADG and improved feed efficiency by 10, 15, and 10%, respectively. Compared with dry rolled grain, steam flaking increased (P < .05) body weight-adjusted ME of corn and milo grain by 15 and 21%, respectively; body weight-adjusted ME for whole corn was 9% greater (P < .05) than for rolled corn grain. Steam flaking was surprisingly effective (13%) at increasing (P < .05) the body weight-adjusted ME of wheat, but steam flaking failed to increase the ME of barley and oats. Higher moisture content of high-moisture corn decreased dry matter intake without depressing ADG and improved efficiency and increased ME of the grain. Compared with steam flakes of moderate thinness, processing milo or barley to a very thin flake tended to reduce ADG and failed to improve feed efficiency. The ideal roughage source and roughage moisture content for maximum ME and ADG varied with grain processing method. Feeding corn silage rather than alfalfa and wet rather than dry roughage depressed (P < .01) ADG of cattle and reduced (P < .01) body weight-adjusted ME of cattle fed high-moisture corn grain but tended to increase both with steam-flaked corn or wheat.


Asunto(s)
Bovinos/crecimiento & desarrollo , Grano Comestible/normas , Manipulación de Alimentos/métodos , Animales , Avena/normas , Peso Corporal/fisiología , Bovinos/fisiología , Ingestión de Energía/fisiología , Metabolismo Energético/fisiología , Hordeum/normas , Triticum/normas , Aumento de Peso/fisiología , Zea mays/normas
4.
J Anim Sci ; 73(10): 3152-72, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8617688

RESUMEN

Growth in animals is defined as accretion of protein, fat and bone. Although growth typically is measured as the change in live weight, nutrient retention is estimated more precisely by measuring empty body weight and composition, whereas production economics are measured ideally through carcass weights and quality. As a percentage of live weight gain, carcass weight gain usually is a much higher percentage during the feedlot phase than during the growing phase of production because dressing percentage (ratio of carcass:live weight) increases with maturation and is greater with concentrate than with roughage diets. At a given fraction of mature body size (maximum body protein mass), body fat percentage seems to be a constant. Mature size may be altered genetically and nutritionally. Protein accretion declines to zero when cattle reach their mature body size (approximately 36% fat in empty body weight in modern cattle) even though mature animals can continue to accrete fat. Although fat accretion can be reduced by limiting the supply of net energy, rate of fat accretion by finishing steers given ad libitum access to high-concentrate diets seems to reach a plateau at approximately 550 g daily. Protein mass, in contrast, increases in proportion to empty body weight. The protein:fat ratio of the carcass can be increased through increasing mature size, by administering hormones or hormonal modifiers, by limiting energy intake during the growing period or finishing period, or by slaughtering cattle at an earlier stage of maturity. Energetically, efficiency of accretion of fat is approximately 1.7 times that of protein. But because more water is stored with deposited protein than with deposited fat, lean tissue gain is four times as efficient as accretion of fat tissue. Conversion of protein to fat is very inefficient, suggesting that excess protein is utilized inefficiently.


Asunto(s)
Bovinos/crecimiento & desarrollo , Animales , Composición Corporal/fisiología , Peso Corporal/fisiología , Bovinos/genética , Bovinos/fisiología , Dieta/normas , Dieta/veterinaria , Metabolismo de los Lípidos , Proteínas/metabolismo , Aumento de Peso/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA