Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153215

RESUMEN

1-Dodecyl-2-methylpyridinium bromide ([C12-2-Pic][Br]) and 1-hexadecyl-2-methylpyridinium bromide ([C16-2-Pic][Br]) are two ionic liquid crystals presenting thermotropic smectic phases above 80 °C. Aiming to take advantage of the liquid crystalline properties at lower temperatures, lyotropic aqueous systems were prepared from these two organic salts. Both systems were characterized by polarized optical microscopy (POM), X-ray powder diffraction (XRD), and fast field cycling nuclear magnetic resonance (FFC-NMR) relaxometry to assess their texture, phase structure, and molecular dynamics, respectively. The mesomorphic behavior was induced at room temperature. Moreover, the lyotropic [C12-2-Pic][Br]aq revealed a smectic phase with higher separation between layers, different from the lamellar phases found in the thermotropic system (S1 and SA), which is thermally stable up to 50 °C. Furthermore, the surfactant nature of the ionic liquids diluted solutions investigated in this work allowed the formation of foams. It was found that the precursor solutions of the lyotropic dilutions with the longest alkyl chain ([C16-2-Pic][Br]aq) originated liquid foams with more stable structures than those of [C12-2-Pic][Br]aq.

2.
Sci Rep ; 12(1): 22500, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577850

RESUMEN

Local molecular ordering in liquids has attracted a lot of interest from researchers investigating crystallization, but is still poorly understood on the molecular scale. Classical nucleation theory (CNT), a macroscopic thermodynamic description of condensation, has shortcomings when dealing with clusters consisting of tens of molecules. Cluster formation and local order fluctuations in liquid media are difficult to study due to the limited spatial resolution of electron- and photon-imaging methods. We used NMR relaxometry to demonstrate the existence of dynamic clusters with short-range orientational order in nominally isotropic liquids consisting of elongated molecules. We observed clusters in liquids where the local ordering is driven by polar, steric, and hydrogen-bond interactions between the molecules. In the case of a liquid crystal, measuring the local orientational order fluctuations allowed us to observe the size of these clusters diverging when approaching the phase transition from the isotropic to the nematic phase. These fluctuations are described in terms of rotational elasticity as a consequence of the correlated reorientations of the neighbouring molecules. Our quantitative observations of the dynamic clusters in liquids, numbering about ten or fewer molecules, indicate that this is a general phenomenon in various types of liquids.

3.
Membranes (Basel) ; 12(11)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36363677

RESUMEN

This study presents the characterization of water dynamics in cellulose acetate-silica asymmetric membranes with very different pore structures that are associated with a wide range of selective transport properties of ultrafiltration (UF) and nanofiltration (NF). By combining 1H NMR spectroscopy, diffusometry and relaxometry and considering that the spin-lattice relaxation rate of the studied systems is mainly determined by translational diffusion, individual rotations and rotations mediated by translational displacements, it was possible to assess the influence of the porous matrix's confinement on the degree of water ordering and dynamics and to correlate this with UF/NF permeation characteristics. In fact, the less permeable membranes, CA/SiO2-22, characterized by smaller pores induce significant orientational order to the water molecules close to/interacting with the membrane matrix's interface. Conversely, the model fitting analysis of the relaxometry results obtained for the more permeable sets of membranes, CA/SiO2-30 and CA/SiO2-34, did not evidence surface-induced orientational order, which might be explained by the reduced surface-to-volume ratio of the pores and consequent loss of sensitivity to the signal of surface-bound water. Comparing the findings with those of previous studies, it is clear that the fraction of more confined water molecules in the CA/SiO2-22-G20, CA/SiO2-30-G20 and CA/SiO2-34-G20 membranes of 0.83, 0.24 and 0.35, respectively, is in agreement with the obtained diffusion coefficients as well as with the pore sizes and hydraulic permeabilities of 3.5, 38 and 81 kg h-1 m-2 bar-1, respectively, reported in the literature. It was also possible to conclude that the post-treatment of the membranes with Triton X-100 surfactants produced no significant structural changes but increased the hydrophobic character of the surface, leading to higher diffusion coefficients, especially for systems associated with average smaller pore dimensions. Altogether, these findings evidence the potential of combining complementary NMR techniques to indirectly study hydrated asymmetric porous media, assess the influence of drying post-treatments on hybrid CA/SiO2 membrane' surface characteristics and discriminate between ultra- and nano-filtration membrane systems.

4.
Membranes (Basel) ; 12(6)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35736269

RESUMEN

In this work, the water order and dynamics in hydrated films of flat asymmetric cellulose acetate (CA)/silica, CA/SiO2, and hybrid membranes, covering a wide range of nanofiltration (NF) and ultrafiltration (UF) permeation properties, were characterised by deuterium nuclear magnetic resonance (DNMR) relaxation. The range of NF/UF characteristics was attained by subjecting three CA/SiO2 membranes, prepared from casting solutions with different acetone/formamide ratios to drying post-treatments of solvent exchange and conditioning with surfactant mixtures. Post-treated and pristine CA/SiO2 membranes were characterised in terms of hydraulic permeability, selective permeation properties and molecular weight cut-off. These results were correlated with the DNMR relaxation findings. It was found that the post-treatment by solvent exchange caused membrane shrinkage that led to very different permeation characteristics and a significant enhancement of the DNMR relaxation observables. In contrast, conditioning with surfactant solutions exhibited a weaker effect over those properties. Scanning electron microscopy (SEM) images were obtained for the membranes post-treated with solvent exchange to confirm their asymmetric nature. This work provides an essential indication that DNMR relaxometry is a reliable tool to characterise the asymmetric porous structures of the NF/UF CA/SiO2 hybrid membranes.

5.
J Phys Chem B ; 125(46): 12787-12796, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34762439

RESUMEN

1H spin-lattice relaxation time (T1) measurements were performed to probe the dynamic behavior of water in aqueous suspensions of cellulose nanocrystals (CNCs) and a layered smectite clay mineral with different degrees of concentration. 1H-T1 experiments were carried out over a wide frequency domain, ranging from a few kilohertz to 500 MHz, with the aid of conventional and fast field cycling nuclear magnetic resonance (NMR) techniques. The experimental relaxometry data illustrate differences between the dynamic behavior of bulk water and that confined in the vicinity of CNC-clay surfaces. Clay alone in moderate concentration was found to enforce almost no effect on the water dynamics, whereas introducing CNCs to the system presented a significantly enhanced relaxivity. The modeling of the relaxation dispersions allowed the determination of dynamical processes and variables explaining the dynamic behavior of water in CNC-clay suspensions. It turned out that reorientations mediated by translational displacements are a leading NMR relaxation mechanism for water interacting with the surfaces of CNC-clay particles in the low-frequency domain. In the high-frequency regime, however, the inner-sphere paramagnetic relaxation mechanism dominates, which is caused by the interaction of water protons with dissolved Fe ions.


Asunto(s)
Nanopartículas , Agua , Celulosa , Arcilla , Espectroscopía de Resonancia Magnética , Suspensiones
6.
J Agric Food Chem ; 69(41): 12102-12110, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34553923

RESUMEN

Rare sugars are monosaccharides and their derivatives that are not commonly found in nature. d-Allulose is a rare sugar that is C-3 epimer of fructose and presents an alternative to sucrose with potential health benefits. In this study, different amounts of sucrose, d-allulose, and soy protein isolate (SPI) were used to prepare a set of pectin gels. The effect of these ingredients on the gels was studied at both a molecular level, by 1H nuclear magnetic resonance (NMR) relaxometry, and a macroscopic level, through the assessment of viscoelastic properties as well as hardness and moisture content measurements. The NMR dispersion profiles were analyzed considering relaxation mechanisms associated with rotational and translational diffusion motions of mono- and disaccharides as well as bound water molecules. Significant variations of the local diffusion coefficient for the studied formulations were evidenced by the model fitting analysis. The viscosity trends observed within each group of samples having the same amount of SPI were mostly in agreement with the diffusion coefficients obtained from the NMR relaxometry. The observed discrepancies could be explained considering hardness and moisture content results, which put into evidence the fact that decreasing the moisture (mainly free water) affects the macroscopic properties of the systems, such as hardness and viscosity, but not the local diffusion processes probed by NMR relaxometry. These findings show the importance of combining both micro- and macroscopic information to analyze the different properties of food products.


Asunto(s)
Imagen por Resonancia Magnética , Pectinas , Difusión , Geles , Espectroscopía de Resonancia Magnética
7.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445788

RESUMEN

Understanding the behavior of a chemical compound at a molecular level is fundamental, not only to explain its macroscopic properties, but also to enable the control and optimization of these properties. The present work aims to characterize a set of systems based on the ionic liquids [Aliquat][Cl] and [Aliquat][FeCl4] and on mixtures of these with different concentrations of DMSO by means of 1H NMR relaxometry, diffusometry and X-ray diffractometry. Without DMSO, the compounds reveal locally ordered domains, which are large enough to induce order fluctuation as a significant relaxation pathway, and present paramagnetic relaxation enhancement for the [Aliquat][Cl] and [Aliquat][FeCl4] mixture. The addition of DMSO provides a way of tuning both the local order of these systems and the relaxation enhancement produced by the tetrachloroferrate anion. Very small DMSO volume concentrations (at least up to 1%) lead to enhanced paramagnetic relaxation without compromising the locally ordered domains. Larger DMSO concentrations gradually destroy these domains and reduce the effect of paramagnetic relaxation, while solvating the ions present in the mixtures. The paramagnetic relaxation was explained as a correlated combination of inner and outer-sphere mechanisms, in line with the size and structure differences between cation and anion. This study presents a robust method of characterizing paramagnetic ionic systems and obtaining a consistent analysis for a large set of samples having different co-solvent concentrations.


Asunto(s)
Dimetilsulfóxido/química , Espectroscopía de Protones por Resonancia Magnética/métodos , Aniones/química , Líquidos Iónicos/química , Iones/química
8.
Phys Rev E ; 101(5-1): 052708, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32575273

RESUMEN

Molecular dynamics of the antiferroelectric liquid crystal 4'-(octyloxy)biphenyl-4-carboxylate2-fluoro-4-[(octyl-2-yloxy)carbonyl]phenyl (abbreviated as D16) was investigated using different nuclear magnetic resonance (NMR) techniques. D16 molecules form a smectic-C_{α}^{*} phase (SmC_{α}^{*}) in an extremely wide temperature range (∼10 °C). Due to a small tilt of the molecules, this phase is characterized by short switching times, important for new photonic applications. The proton spin-lattice relaxation times were measured in isotropic (Iso), smectic-A (SmA), and SmC_{α}^{*} phases over a wide frequency range of five decades, with conventional and fast field-cycling NMR techniques. This approach allowed a comparison of the essential processes of molecular dynamics taking place in these phases. On the basis of NMR relaxometry measurements, we present a description of the motional behavior of liquid crystal molecules forming SmC_{α}^{*}. Pretransitional effects were observed in wide temperature ranges in both the isotropic and SmA phases in D16. The ^{1}H fast field-cycling NMR measurements were supplemented with NMR diffusometry and ^{19}F NMR spectroscopy.

9.
Soft Matter ; 15(42): 8496-8511, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31633147

RESUMEN

In the search of the predicted biaxial nematic phase, a series of shape-persistent board-shaped mesogens with maximum molecular biaxiality and a dipole along the minor molecular axis were designed to form nematic (N) mesophases. One compound exhibits a wide nematic temperature range, which can be supercooled to room temperature. A comprehensive variable temperature X-ray study on aligned samples reveals patterns being dominated by the form factor of very small aggregates, from which the aspect ratio of the lead compound with length (L) : breadth (B) : width (W) of 10.73 : 3.16 : 1.23 could be obtained. The ratio is close to the predicted optimum molecular biaxiality by Straley's hard particle model. Hence variable temperature proton relaxation studies on this mesogen were carried out over a wide frequency range. The global fit of the frequency dispersions at five temperatures with a motional model requires in addition to the usual rotation/reorientation contribution, two independent director fluctuations contributions: one for the conventional nematic order director (n) fluctuations and the other for the minor director (m) fluctuations (normal to n). The correlation length of the minor directors determined by NMR could extend to 5-8 molecules in the W direction, but only to the nearest neighbour in the B direction, as found by X-ray diffraction. Both X-ray and NMR studies indicate that these new types of lead structure are extremely promising to find the long sought-after biaxial N mesophase.

10.
Magn Reson Chem ; 56(2): 108-112, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28568740

RESUMEN

A study of molecular dynamics of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulphonyl)imide ([Emim][Tf2N]) in solution with deuterated ethanol at different molar concentration and temperatures is presented. The study was performed using 1 H and 2 H nuclear magnetic relaxation and 2 H 1D spectroscopy. The temperature dependence of the spin-lattice relaxation time T1 of the cations allows the evaluation of the activation energies of the rotational degree of freedom of these molecules. The viscosity in the binary system increases with the concentration of ionic liquid. However, the activation energy in the cation molecules decreases when the concentration of the ionic liquid increases, indicating that the rotational dynamics is facilitated. This behavior is explained from the fact that the presence of the ionic liquid in the system disrupts the degree of intermediate range order expected in the alcohol system. Copyright © 2017 John Wiley & Sons, Ltd.

11.
J Phys Chem B ; 121(51): 11472-11484, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29179541

RESUMEN

In this work, 1H NMR relaxometry and diffusometry as well as viscometry experiments were carried out as a means to study the molecular dynamics of magnetic and nonmagnetic ionic liquid-based systems. In order to evaluate the effect of a cosolvent on the superparamagnetic properties observed for Aliquat-iron-based magnetic ionic liquids, mixtures comprising different concentrations, 1% and 10% (v/v), of DMSO-d6 were prepared and studied. The results for both magnetic and nonmagnetic systems were consistently analyzed an suggest that, when at low concentrations, DMSO-d6 promotes more structured ionic arrangements, thus enhancing these superparamagnetic properties. Furthermore, the analysis of temperature and water concentration effects allowed to conclude that neither one of these variables significantly affected the superparamagnetic properties of the studied magnetic ionic liquids.

12.
J Phys Chem B ; 120(20): 4706-14, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27136425

RESUMEN

Liquid crystals that exhibit de Vries smectic A phases are promising materials for new generations of ferroelectric liquid crystal displays and other electro-optical devices. We investigated the molecular dynamic properties of a rod-like de Vries liquid crystal compound, namely the 9HL, a (S)-hexyl lactate derivative, in the whole mesophasic range. This is the first molecular dynamics' investigation on a de Vries phase, and the interest of this system is related to the understanding of the structural and supramolecular organization of de Vries SmA phases, which has been a subject of a broad scientific debate in the last years. Proton NMR spin-lattice relaxation times, T1, were measured in the range 100 MHz to 5 kHz, thus covering a very wide range of motional regimes. (1)H NMR dispersion curves and temperature-dependent relaxation rates were analyzed with a global minimum target fitting approach and the main molecular motions, namely reorientational diffusion, translational self-diffusion, layer undulation, and tilting director fluctuations were fully characterized. The molecular dynamics' behavior observed across the SmA-SmC* phase transitions of 9HL was consistent with the proposed cluster diffuse cone model for the de Vries SmA phase.

13.
J Phys Chem B ; 119(35): 11740-7, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26252801

RESUMEN

A proton nuclear magnetic relaxation dispersion (1)H NMRD study of the molecular dynamics in mixtures of magnetic ionic liquid [P66614][FeCl4] with [P66614][Cl] ionic liquid and mixtures of [P66614][FeCl4] with dimethyl sulfoxide (DMSO) is presented. The proton spin-lattice relaxation rate, R1, was measured in the frequency range of 8 kHz-300 MHz. The viscosity of the binary mixtures was measured as a function of an applied magnetic field, B, in the range of 0-2 T. In the case of DMSO/[P66614][FeCl4] the viscosity was found to be independent from the magnetic field, while in the case of the [P66614][Cl]/[P66614][FeCl4] system viscosity decreased with the increase of the magnetic field strength. The spin-lattice relaxation results were analyzed for all systems taking into account the relaxation mechanisms associated with the molecular motions with correlation times in a range between 10(-11) and 10(-7)s, usually observed by NMRD, and the paramagnetic relaxation contributions associated with the presence of the magnetic ions in the systems. In the case of the DMSO/[P66614][FeCl4] system the R1 dispersion shows the relaxation enhancement due to the presence of the magnetic ions, similar to that reported for contrast agents. For the [P66614][Cl]/[P66614][FeCl4] system, the R1 dispersion presents a much larger paramagnetic relaxation contribution, in comparison with that observed for the DMSO/[P66614][FeCl4] mixtures but different from that reported for other magnetic ionic liquid system. In the [P66614][Cl]/[P66614][FeCl4] system the relaxation enhancement associated with the paramagnetic ions is clearly not proportional to the concentration of magnetic ions, in contrast with what is observed for the DMSO/[P66614][FeCl4] system.

14.
J Chem Phys ; 140(24): 244307, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24985638

RESUMEN

NMR spectroscopy ((1)H, (13)C, (15)N) shows that carbon disulfide reacts spontaneously with 1-butyl-1-methylpyrrolidinium acetate ([BmPyrro][Ac]) in the liquid phase. It is found that the acetate anions play an important role in conditioning chemical reactions with CS2 leading, via coupled complex reactions, to the degradation of this molecule to form thioacetate anion (CH3COS(-)), CO2, OCS, and trithiocarbonate (CS3 (2-)). In marked contrast, the cation does not lead to the formation of any adducts allowing to conclude that, at most, its role consists in assisting indirectly these reactions. The choice of the [BmPyrro](+) cation in the present study allows disentangling the role of the anion and the cation in the reactions. As a consequence, the ensemble of results already reported on CS2-[Bmim][Ac] (1), OCS-[Bmim][Ac] (2), and CO2-[Bmim][Ac] (3) systems can be consistently rationalized. It is argued that in system (1) both anion and cation play a role. The CS2 reacts with the acetate anion leading to the formation of CH3COS(-), CO2, and OCS. After these reactions have proceeded the nascent CO2 and OCS interact with the cation to form imidazolium-carboxylate ([Bmim] CO2) and imidazolium-thiocarboxylate ([Bmim] COS). The same scenario also applies to system (2). In contrast, in the CO2-[Bmim] [Ac] system a concerted cooperative process between the cation, the anion, and the CO2 molecule takes place. A carbene issued from the cation reacts to form the [Bmim] CO2, whereas the proton released by the ring interacts with the anion to produce acetic acid. In all these systems, the formation of adduct resulting from the reaction between the solute molecule and the carbene species originating from the cation is expected. However, this species was only observed in systems (2) and (3). The absence of such an adduct in system (1) has been theoretically investigated using DFT calculations. The values of the energetic barrier of the reactions show that the formation of [Bmim] CS2 is unfavoured and that the anion offers a competitive reactive channel via an oxygen-sulphur exchange mechanism with the solute in systems (1) and (2).

15.
Magn Reson Chem ; 52(10): 540-5, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24975451

RESUMEN

We investigate the effect of monoatomic salts on the molecular dynamics in the nematic and isotropic phases formed by the chromonic liquid crystal Edicol Sunset Yellow. The study was carried out using proton nuclear magnetic resonance relaxometry. To analyse the effect of incorporation of additional sodium chloride or lithium chloride on the solutions' molecular dynamics, the spin-lattice relaxation time was measured for Larmor frequencies between 10 kHz and 100 MHz. In the nematic phase, the presence of additional sodium or lithium ions seems to contribute to an increase of the rotations/reorientations corr elation times in comparison with the mixture without extra ions. The collective motions detected by proton NMR relaxometry are associated with collective fluctuations of molecules within the stacks in the nematic phase and with order parameter fluctuations in the isotropic phase.

16.
Chem Commun (Camb) ; 49(94): 11083-5, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24141427

RESUMEN

Raman and NMR spectroscopies show that CS2 and OCS react spontaneously with 1-butyl-3-methylimidazolium acetate [C4mim] [Ac] in the liquid phase. The formation of [C4mim] CO2, [C4mim] COS, CH3COS(-) and gaseous CO2 and OCS in both systems demonstrates that the anion plays an unexpected role not observed in the CO2-[C4mim] [Ac] reaction.

17.
J Phys Chem B ; 117(39): 11877-84, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23972145

RESUMEN

A study is presented of the molecular dynamics and of the viscosity in pure [Aliquat][Cl] ionic liquid and in a mixture of [Aliquat][Cl] with 1% (v/v) of [Aliquat][FeCl4]. The (1)H spin-lattice relaxation rate, R1, was measured by NMR relaxometry between 8 and 300 MHz. In addition, the translation self-diffusion, D, was measured by pulse field gradient NMR. The ILs' viscosity was measured as a function of an applied magnetic field, B, and it was found that the IL mixture's viscosity decreased with increasing B, whereas the [Aliquat][Cl] viscosity is independent of B. All experimental results were analyzed taking into account the viscosity's magnetic field dependence, assuming a modified Stokes-Einstein diffusion/viscosity relation. The main difference between the relaxation mechanisms responsible for R1 in the two IL systems is related to the additional paramagnetic relaxation contribution associated with the (1)H spins-[FeCl4] paramagnetic moments' interactions. Cross-relaxation cusps in the R1 dispersion, associated with (35)Cl and (1)H nuclear spins in the IL systems, were detected. The R1 model considered was successfully fitted to the experimental results, and it was possible to estimate the value of D at zero field in the case of the IL mixture which was consistent with the values of D measured at 7 and 14.1 T and with the magnetic field dependence estimated from the viscosity measurements. It was observed that a small concentration of [Aliquat][FeCl4] in the [Aliquat][Cl] was enough to produce a "superparamagnetic"-like effect and to change the IL mixture's molecular dynamics and viscosity and to allow for their control with an external magnetic field.

18.
J Phys Chem A ; 116(20): 4890-901, 2012 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-22533570

RESUMEN

The solvation of CO(2) in 1-butyl-3-methylimidazolium acetate (Bmim Ac) has been investigated by (1)H, (13)C, and (15)N NMR spectroscopy at low CO(2) molar fraction (mf) (x(CO(2)) ca. 0.27) corresponding to the reactive regime described in part 1 of this study. It is shown that a carboxylation reaction occurs between CO(2) and Bmim Ac, leading to the formation of a non-negligible amount (~16%) of 1-butyl-3-methylimidazolium-2-carboxylate. It is also found that acetic acid molecules are produced during this reaction and tend to form with elapsed time stable cyclic dimers existing in pure acid. A further series of experiments has been dedicated to characterize the influence of water traces on the carboxylation reaction. It is found that water, even at high ratio (0.15 mf), does not hamper the formation of the carboxylate species but lead to the formation of byproduct involving CO(2). The evolution with temperature of the resonance lines associated with the products of the reactions confirms that they have a different origin. The main byproduct has been assigned to bicarbonate. All these results confirm the existence of a reactive regime in the CO(2)-Bmim Ac system but different from that reported in the literature on the formation of a reversible molecular complex possibly accompanied by a minor chemical reaction. Finally, the reactive scheme interpreting the carboxylation reaction and the formation of acetic acid proposed in the literature is discussed. We found that the triggering of the carboxylation reaction is necessarily connected with the introduction of carbon dioxide in the IL. We argue that a more refined scheme is still needed to understand in details the different steps of the chemical reaction in the dense phase.


Asunto(s)
Dióxido de Carbono/química , Imidazoles/química , Espectroscopía de Resonancia Magnética/normas , Estándares de Referencia
19.
J Phys Chem B ; 116(8): 2339-46, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22352959

RESUMEN

The Larmor frequency and temperature dependence of the proton nuclear magnetic resonance (NMR) spin-lattice relaxation time was measured in the isotropic and columnar phases of both chain-end fluorinated triphenylene disk-like and fully hydrogenated molecules. In the columnar phase, the results are interpreted in terms of the collective motions, due to the deformations of the columns, and individual molecular translational self-diffusion displacements and rotations/reorientacions. In the isotropic phase, local molecular motions and order fluctuations as a pretransitional effect were considered. The activation energies of the molecular motions of the partially fluorinated molecule were found to be higher than those corresponding to the hydrocarbon homologue. Our findings show a clear difference in the relaxation dispersion between the two liquid crystals homologues. In particular it is observed that the columnar undulations have a much stronger contribution to the relaxation rate in the low frequency regime in the case of the fully hydrogenated triphenylene. The effect of fluorination of the pheripheral chain enhances the columnar mesophase's stability.


Asunto(s)
Crisenos/química , Simulación de Dinámica Molecular , Alquilación , Espectroscopía de Resonancia Magnética , Estructura Molecular , Protones , Temperatura
20.
Chem Commun (Camb) ; 48(9): 1245-7, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22158831

RESUMEN

The formation of 1-butyl-3-methylimidazolium-2-carboxylate in the mixture of CO(2) with 1-butyl-3-methylimidazolium acetate under mild conditions (298 K, 0.1 MPa) has been put in evidence in the liquid phase using Raman and infrared spectroscopy complemented by DFT calculations and NMR ((1)H, (13)C, (15)N) spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA