Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253012

RESUMEN

While a substantial proportion of adults infected with SARS-CoV-2 progress to develop severe disease, children rarely manifest respiratory complications. Therefore, understanding differences in the local and systemic response to SARS-CoV-2 infection between children and adults may provide important clues about the pathogenesis of SARS-CoV-2 infection. To address this, we first generated a healthy reference multi-omics single cell data set from children (n=30) in whom we have profiled triple matched samples: nasal and tracheal brushings and PBMCs, where we track the developmental changes for 42 airway and 31 blood cell populations from infancy, through childhood to adolescence. This has revealed the presence of naive B and T lymphocytes in neonates and infants with a unique gene expression signature bearing hallmarks of innate immunity. We then contrast the healthy reference with equivalent data from severe paediatric and adult COVID-19 patients (total n=27), from the same three types of samples: upper and lower airways and blood. We found striking differences: children with COVID-19 as opposed to adults had a higher proportion of innate lymphoid and non-clonally expanded naive T cells in peripheral blood, and a limited interferon-response signature. In the airway epithelium, we found the highest viral load in goblet and ciliated cells and describe a novel inflammatory epithelial cell population. These cells represent a transitional regenerative state between secretory and ciliated cells; they were found in healthy children and were enriched in paediatric and adult COVID-19 patients. Epithelial cells display an antiviral and neutrophil-recruiting gene signature that is weaker in severe paediatric versus adult COVID-19. Our matched blood and airway samples allowed us to study the spatial dynamics of infection. Lastly, we provide a user-friendly interface for this data1 as a highly granular reference for the study of immune responses in airways and blood in children.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21252231

RESUMEN

BackgroundSARS-CoV-2 can cause severe respiratory failure leading to prolonged mechanical ventilation. Data are just emerging about the practice and outcomes of tracheostomy in these patients. We reviewed our experience with tracheostomies for SARS-CoV-2 at our tertiary-care, urban teaching hospital. MethodsWe reviewed the demographics, comorbidities, timing of mechanical ventilation, tracheostomy, and ICU and hospital lengths-of-stay (LOS) in SARS-CoV-2 patients who received tracheostomies. Early tracheostomy was considered <14 days of ventilation. Medians with interquartile ranges (IQR) were calculated and compared with Wilcoxon rank sum, Spearman correlation, Kruskal-Wallis, and regression modeling. ResultsFrom March 2020 to January 2021, our center had 370 patients intubated for SARS-CoV-2, and 59 (16%) had percutaneous bedside tracheostomy. Median time from intubation to tracheostomy was 19 (IQR 17 - 24) days. Demographics and comorbidities were similar between early and late tracheostomy, but early tracheostomy was associated with shorter ICU LOS and a trend towards shorter ventilation. To date, 34 (58%) of patients have been decannulated, 17 (29%) before hospital discharge; median time to decannulation was 24 (IQR 19-38) days. Decannulated patients were younger (56 vs 69 years), and in regression analysis, pneumothorax was associated was associated with lower decannulation rates (OR 0.05, 95CI 0.01 - 0.37). No providers developed symptoms or tested positive for SARS-CoV-2. ConclusionsTracheostomy is a safe and reasonable procedure for patients with prolonged SARS-CoV-2 respiratory failure. We feel that tracheostomy enhances care for SARS-CoV-2 since early tracheostomy appears associated with shorter duration of critical care, and decannulation rates appear high for survivors.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20248588

RESUMEN

BackgroundSevere community-acquired pneumonia secondary to SARS-CoV-2 is a leading cause of death. Current guidelines recommend patients with SARS-CoV-2 pneumonia receive empirical antibiotic therapy for suspected bacterial superinfection, but little evidence supports these recommendations. MethodsWe obtained bronchoscopic bronchoalveolar lavage (BAL) samples from patients with SARS-CoV-2 pneumonia requiring mechanical ventilation. We analyzed BAL samples with multiplex PCR and quantitative culture to determine the prevalence of superinfecting pathogens at the time of intubation and identify episodes of ventilator-associated pneumonia (VAP) over the course of mechanical ventilation. We compared antibiotic use with guideline-recommended care. ResultsThe 179 ventilated patients with severe SARS-CoV-2 pneumonia discharged from our hospital by June 30, 2020 were analyzed. 162 (90.5%) patients had at least one BAL procedure; 133 (74.3%) within 48 hours after intubation and 112 (62.6%) had at least one subsequent BAL during their hospitalization. A superinfecting pathogen was identified within 48 hours of intubation in 28/133 (21%) patients, most commonly methicillin-sensitive Staphylococcus aureus or Streptococcus species (21/28, 75%). BAL-based treatment reduced antibiotic use compared with guideline-recommended care. 72 patients (44.4%) developed at least one VAP episode. Only 15/72 (20.8%) of initial VAPs were attributable to multidrug-resistant pathogens. The incidence rate of VAP was 45.2/1000 ventilator days. ConclusionsWith use of sensitive diagnostic tools, bacterial superinfection at the time of intubation is infrequent in patients with severe SARS-CoV-2 pneumonia. Treatment based on current guidelines would result in substantial antibiotic overuse. The incidence rate of VAP in ventilated patients with SARS-CoV-2 pneumonia are higher than historically reported.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20177543

RESUMEN

BackgroundThe coronavirus disease 2019 (COVID-19) pandemic raised concern for exposure to healthcare providers through aerosol generating procedures, such as bronchoalveolar lavage (BAL). Current society guidelines recommended limiting use of BAL to reduce operators risk for infection, yet data on the infection rate for providers after BAL is sparse. Since March 2020, our institution used a modified protocol to perform over 450 BALs on intubated COVID-19 patients. We therefore sought to describe the subsequent infectious risks to providers associated with BAL. MethodsFifty-two pulmonary and critical care providers (faculty and fellows) at our tertiary-care, urban medical center were surveyed. Survey participants were asked to provide the number of BALs on COVID-19 patients they performed, the number of weeks they cared for intensive care unit (ICU) patients with COVID-19, and the results of any SARS-CoV-2 testing that they received. Participants were asked to assess the difficulty of BAL on intubated COVID-19 patients as compared to routine ICU BAL using a numeric perceived difficulty score ranging from 1 (easier) to 10 (harder). ResultsWe received forty-seven responses from fifty-two surveyed (90% response rate), with 2 declining to participate. Many respondents (19/45, 42%) spent >5 weeks on an ICU service with COVID-19 patients. The number of BALs performed by providers ranged from 0 to >60. Sixteen of the 35 providers (46%) who performed BALs underwent at least one nasopharyngeal (NP) swab to test for SARS-CoV-2, but none were positive. Twenty-seven of the 35 providers (77%) who performed BALs underwent SARS- CoV-2 serology testing, and only one (3.7%) was positive. Respondents indicated occasionally not being able to follow aerosol-minimizing steps but overall felt BALs in COVID-19 patients was only slightly more difficult than routine bronchoscopy. DiscussionAt a high-volume center having performed >450 BALs on intubated COVID-19 patients with aerosol-limiting precautions, our survey of bronchoscopists found no positive NP SARS-CoV-2 tests and only one positive antibody test result. While the optimal role for COVID-19 BAL remains to be determined, these data suggest that BAL can be safely performed in intubated COVID-19 patients if experienced providers take precautions to limit aerosol generation and wear personal protective equipment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA