Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 13(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39272483

RESUMEN

Despite the extensive use of recycled polyethylene terephthalate (rPET) in food contact materials (FCMs), research on the presence of heavy metals (HMs) and rare earth elements (REEs) during various recycling stages (e.g., flakes, granules, and preforms) remains limited. This study aimed to address these gaps by validating a rapid and sensitive analytical method to quantify 26 HMs and 4 REEs in PET and rPET matrices. An ICP-MS method was validated per EURACHEM guidelines, assessing linearity, limits of detection (LOD), limits of quantification (LOQ), accuracy, and repeatability. The method was employed for initial screening of HMs and REEs classified as non-intentionally added substances (NIASs) in PET and rPET samples. The findings showed high accuracy and reliability, with recovery rates between 80% and 120%. Analysis revealed varying concentrations of HMs and REEs, with the highest levels in 100% rPET preforms, notably Zn, Cu, and Al among HMs, and La among REEs. The study identified critical contamination points during the recycling process, highlighting the need for targeted interventions. This research provides a crucial analytical framework for assessing HMs and REEs in PET and rPET, ensuring FCM safety compliance and supporting efforts to enhance rPET product safety, promoting public health protection and advancing the circular economy.

2.
Toxics ; 10(7)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35878282

RESUMEN

The intensive use of organophosphorus pesticides (OPPs) causes concern among authorities in different countries, as many of them, remaining unchanged for a long time, pose a threat to environmental sustainability. This study assessed the spatio-temporal trends of nine OPPs in the water dissolved phase (WDP), suspended particulate matter (SPM), and sediment samples from the Sele River estuary, Southern Italy. Samples were collected in 10 sampling sites during four seasons. The highest levels were found at the mouth (mean value 28.25 ng L-1 as WDP + SPM) and then decreased moving southwards to the Mediterranean Sea. Moreover, highest concentrations were detected in the warm season (July) with a mean value of 27.52 ng L-1. The load contribution to the Mediterranean Sea was evaluated in about 61.5 kg year-1, showing that the river was an important source of OPPs through discharge into the sea. The risk assessment revealed that no high-risk indices for the general-case scenario were observed, but for the worst-case scenario, potential risks were associated with chlorpyrifos, pyrimifos-methyl, and parathion, suggesting that OPP contamination should not be neglected. This study makes up the first record of OPPs in the surface waters of the Sele River and provides helpful data as a starting point for future studies.

3.
Toxics ; 10(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35878306

RESUMEN

The Sele River, located in the Campania Region (southern Italy), is one of the most important rivers and the second in the region by average water volume, behind the Volturno River. To understand the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in the Sele River, water sediment samples were collected from areas around the Sele plain at 10 sites in four seasons. In addition, the ecosystem health risk and the seasonal and spatial distribution of PAHs in samples of water and sediment were assessed. Contaminant discharges of PAHs into the sea were calculated at about 1807.9 kg/year. The concentration ranges of 16 PAHs in surface water (DP), suspended particulate matter (SPM), and sediment were 10.1-567.23 ng/L, 121.23-654.36 ng/L, and 331.75-871.96 ng/g, respectively. Isomeric ratio and principal component analyses indicated that the PAH concentrations in the water and sediment near the Sele River were influenced by industrial wastewater and vehicle emissions. The fugacity fraction approach was applied to determine the trends for the water-sediment exchange of 16 priority PAHs; the results indicated that fluxes, for the most part, were from the water into the sediment. The toxic equivalent concentration (TEQ) of carcinogenic PAHs ranged from 137.3 to 292.6 ngTEQ g-1, suggesting that the Sele River basin presents a definite carcinogenic risk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA