Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 39(7): 2503-18, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21109534

RESUMEN

Immediate early gene (IEG) expression is coordinated by multiple MAP kinase signaling pathways in a signal specific manner. Stress-activated p38α MAP kinase is implicated in transcriptional regulation of IEGs via MSK-mediated CREB phosphorylation. The protein kinases downstream to p38, MAPKAP kinase (MK) 2 and MK3 have been identified to regulate gene expression at the posttranscriptional levels of mRNA stability and translation. Here, we analyzed stress-induced IEG expression in MK2/3-deficient cells. Ablation of MKs causes a decrease of p38α level and p38-dependent IEG expression. Unexpectedly, restoration of p38α does not rescue the full-range IEG response. Instead, the catalytic activity of MKs is necessary for the major transcriptional activation of IEGs. By transcriptomics, we identified MK2-regulated genes and recognized the serum response element (SRE) as a common promoter element. We show that stress-induced phosphorylation of serum response factor (SRF) at serine residue 103 is significantly reduced and that induction of SRE-dependent reporter activity is impaired and can only be rescued by catalytically active MK2 in MK2/3-deficient cells. Hence, a new function of MKs in transcriptional activation of IEGs via the p38α-MK2/3-SRF-axis is proposed which probably cooperates with MKs' role in posttranscriptional gene expression in inflammation and stress response.


Asunto(s)
Genes Inmediatos-Precoces , Péptidos y Proteínas de Señalización Intracelular/fisiología , Sistema de Señalización de MAP Quinasas , Proteínas Serina-Treonina Quinasas/fisiología , Activación Transcripcional , Animales , Anisomicina/farmacología , Núcleo Celular/enzimología , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Proteínas Inmediatas-Precoces/biosíntesis , Proteínas Inmediatas-Precoces/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Respuesta Sérica/metabolismo , Estrés Fisiológico/genética , Rayos Ultravioleta
2.
Biochim Biophys Acta ; 673(3): 270-8, 1981 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-7225419

RESUMEN

1. Proteoglycan subunits isolated by standard procedures from bovine nasal cartilage, previously incubated in the presence of [32P]phosphate contain [32]-phosphate ester groups as a regular structural component. 2. Contamination of the proteoglycan subunit with 32P-labeled nucleic acids could be excluded by repeated cesium chloride density gradient centrifugation under associative and dissociative conditions, lanthanum chloride precipitation, gel filtration and by the resistance of the proteoglycan subunit associated 32P to phosphoric diester hydrolases. 3. The [32P]phosphate ester groups are associated to the chondroitin sulfate peptide fraction obtained by proteolytic digestion of the proteoglycan subunit molecule. Degradation of the chondroitin sulfate peptide by chondroitinase ABC resulted in a 32P-labelled oligosaccharide peptide fraction, that contains xylose, galactose, glucuronic acid and inorganic phosphate in a molar ratio 1 : 2 : 1 : 0.12. 4. 32P radioactivity is released as inorganic phosphate by treatment of the 32P-labelled oligosaccharide peptide with acid phosphatase or alkali.


Asunto(s)
Cartílago/análisis , Compuestos Organofosforados/análisis , Proteoglicanos/aislamiento & purificación , Fosfatasa Ácida/metabolismo , Animales , Bovinos , Cromatografía en Gel , Ésteres/análisis , Tabique Nasal/análisis
3.
Biochem J ; 176(3): 671-6, 1978 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-747644

RESUMEN

1. Human skin fibroblasts internalize homologous sulphated proteoglycans by adsorptive endocytosis. Endocytosis rate is half maximal when the concentration of the proteoglycans is 0.1 nM. At saturation, a single fibroblast may endocytose up to 8 X 10(6) proteoglycan molecules/h. 2. The kinetics of prote;glycan binding to the cell surface suggest the presence of 6 X 10(5) high-affinity binding sites per cell. The bulk of sulphated proteoglycans associates to low-affinity binding sites on the cell surface. 3. Glycosaminoglycans and other anionic macromolecules inhibit endocytosis of sulphated proteoglycans non-competitively. The lack of interaction of glycosaminoglycans with the cell-surface receptors for sulphated proteoglycans suggests that the protein core of proteoglycans is essential for binding to the cell surface. 4. The effects of trypsin, cell density, serum concentration and medium pH on endocytosis and degradation of endocytosed sulphated proteoglycans is described. 5. A comparison of the number of the high-affinity binding sites and the number of molecules endocytosed with respect to time suggests a recycling of the proteoglycan receptors between the cell surface and the endocytotic vesicles and/or the lysosomes.


Asunto(s)
Endocitosis , Fibroblastos/metabolismo , Proteoglicanos/metabolismo , Recuento de Células , Células Cultivadas , Endocitosis/efectos de los fármacos , Glicosaminoglicanos/metabolismo , Humanos , Cinética , Sustancias Macromoleculares , Piel/citología , Sulfatos/metabolismo , Tripsina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA