Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288437

RESUMEN

Plants regulate gas exchange with the environment and modulate transpirational water flow through guard cells, which set the aperture of the stomatal pores. External and internal stimuli are detected by guard cells and integrated into a signalling network that modulate turgor pressure and, hence, pore size. Pathogen-associated molecular patterns are among the stimuli that induce stomatal closure, to prevent pathogen entry through the pores, and this response, also referred to as stomatal immunity, is one of the hallmarks of PAMP-triggered immunity. While reactive oxygen species (ROS)-mediated signalling plays a key role in stomatal immunity, also the gasotransmitter hydrogen sulphide (H2S) interacts with key components of the guard cell signalling network to induce stomatal closure. While the role of H2S, produced by the main cytosolic source L-cysteine desulfhydrase 1, has been already investigated, there are additional enzymatic sources that synthesize H2S in different subcellular compartments. Their function has remained enigmatic, however. In this work, we elucidate the involvement of the mitochondrial H2S source, ß-cyanoalanine synthase CAS-C1, on stomatal immunity induced by the bacterial PAMP flagellin (flg22). We show that cas-c1 plants are impaired to induce flg22-triggered stomatal closure and apoplastic ROS production, while they are more susceptible to bacterial surface inoculation. Moreover, mitochondrial H2S donor AP39 induced stomatal closure in an RBOHD-dependent manner, while depletion of endogenous H2S, impaired RBOHD-mediated apoplastic ROS production. In addition, pharmacological disruption of mitochondrial electron transport chain activity, affected stomatal closure produced by flg22, indicating its participation in the stomatal immunity response. Our findings add evidence to the emerging realization that intracellular organelles play a decisive role in orchestrating stomatal signalling and immune responses and suggest that mitochondrial-derived H2S is an important player of the stomatal immunity signalling network.

2.
New Phytol ; 243(6): 2175-2186, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39073122

RESUMEN

Plants rely on solar energy to synthesize ATP and NADPH for photosynthetic carbon fixation and all cellular need. Mitochondrial respiration is essential in plants, but this may be due to heterotrophic bottlenecks during plant development or because it is also necessary in photosynthetically active cells. In this study, we examined in vivo changes of cytosolic ATP concentration in response to light, employing a biosensing strategy in the moss Physcomitrium patens and revealing increased cytosolic ATP concentration caused by photosynthetic activity. Plants depleted of respiratory Complex I showed decreased cytosolic ATP accumulation, highlighting a critical role of mitochondrial respiration in light-dependent ATP supply of the cytosol. Consistently, targeting mitochondrial ATP production directly, through the construction of mutants deficient in mitochondrial ATPase (complex V), led to drastic growth reduction, despite only minor alterations in photosynthetic electron transport activity. Since P. patens is photoautotrophic throughout its development, we conclude that heterotrophic bottlenecks cannot account for the indispensable role of mitochondrial respiration in plants. Instead, our results support that mitochondrial respiration is essential for ATP provision to the cytosol in photosynthesizing cells. Mitochondrial respiration provides metabolic integration, ensuring supply of cytosolic ATP essential for supporting plant growth and development.


Asunto(s)
Adenosina Trifosfato , Bryopsida , Respiración de la Célula , Citosol , Mitocondrias , Fotosíntesis , Adenosina Trifosfato/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Bryopsida/metabolismo , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Luz
3.
J Exp Bot ; 75(16): 4851-4872, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38733289

RESUMEN

Cytoplasmic male sterility (CMS) is of major agronomical relevance in hybrid breeding. In gametophytic CMS, abortion of pollen is determined by the grain genotype, while in sporophytic CMS, it is determined by the mother plant genotype. While several CMS mechanisms have been dissected at the molecular level, gametophytic CMS has not been straightforwardly accessible. We used the gametophytic Sha-CMS in Arabidopsis to characterize the cause and process of pollen abortion by implementing in vivo biosensing in single pollen and mitoTALEN mutagenesis. We obtained conclusive evidence that orf117Sha is the CMS-causing gene, despite distinct characteristics from other CMS genes. We measured the in vivo cytosolic ATP content in single pollen, followed pollen development, and analyzed pollen mitochondrial volume in two genotypes that differed only by the presence of the orf117Sha locus. Our results showed that the Sha-CMS is not triggered by ATP deficiency. Instead, we observed desynchronization of a pollen developmental program. Pollen death occurred independently in pollen grains at diverse stages and was preceded by mitochondrial swelling. We conclude that pollen death is grain-autonomous in Sha-CMS and propose that mitochondrial permeability transition, which was previously described as a hallmark of developmental and environmental-triggered cell death programs, precedes pollen death in Sha-CMS.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Infertilidad Vegetal , Polen , Polen/genética , Polen/crecimiento & desarrollo , Infertilidad Vegetal/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Genes Mitocondriales
4.
Nat Commun ; 15(1): 2792, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555362

RESUMEN

Plant photosynthesis contains two functional modules, the light-driven reactions in the thylakoid membrane and the carbon-fixing reactions in the chloroplast stroma. In nature, light availability for photosynthesis often undergoes massive and rapid fluctuations. Efficient and productive use of such variable light supply requires an instant crosstalk and rapid synchronization of both functional modules. Here, we show that this communication involves the stromal exposed C-terminus of the thylakoid K+-exchange antiporter KEA3, which regulates the ΔpH across the thylakoid membrane and therefore pH-dependent photoprotection. By combining in silico, in vitro, and in vivo approaches, we demonstrate that the KEA3 C-terminus senses the energy state of the chloroplast in a pH-dependent manner and regulates transport activity in response. Together our data pinpoint a regulatory feedback loop by which the stromal energy state orchestrates light capture and photoprotection via multi-level regulation of KEA3.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tilacoides/metabolismo , Protones , Antiportadores/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fotosíntesis/fisiología , Cloroplastos/metabolismo , Luz
5.
J Exp Bot ; 75(8): 2299-2312, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301663

RESUMEN

Barley is a staple crop of major global importance and relatively resilient to a wide range of stress factors in the field. Transgenic reporter lines to investigate physiological parameters during stress treatments remain scarce. We generated and characterized transgenic homozygous barley lines (cv. Golden Promise Fast) expressing the genetically encoded biosensor Grx1-roGFP2, which indicates the redox potential of the major antioxidant glutathione in the cytosol. Our results demonstrated functionality of the sensor in living barley plants. We determined the glutathione redox potential (EGSH) of the cytosol to be in the range of -308 mV to -320 mV. EGSH was robust against a combined NaCl (150 mM) and water deficit treatment (-0.8 MPa) but responded with oxidation to infiltration with the phytotoxic secretome of the necrotrophic fungus Botrytis cinerea. The generated reporter lines are a novel resource to study biotic and abiotic stress resilience in barley, pinpointing that even severe abiotic stress leading to a growth delay does not automatically induce cytosolic EGSH oxidation, while necrotrophic pathogens can undermine this robustness.


Asunto(s)
Técnicas Biosensibles , Hordeum , Citosol/metabolismo , Hordeum/genética , Hordeum/metabolismo , Estrés Fisiológico , Oxidación-Reducción , Glutatión/metabolismo , Técnicas Biosensibles/métodos
6.
Curr Biol ; 34(2): 327-342.e4, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38176418

RESUMEN

Besides their central function in respiration, plant mitochondria play a crucial role in maintaining cellular homeostasis during stress by providing "retrograde" feedback to the nucleus. Despite the growing understanding of this signaling network, the nature of the signals that initiate mitochondrial retrograde regulation (MRR) in plants remains unknown. Here, we investigated the dynamics and causative relationship of a wide range of mitochondria-related parameters for MRR, using a combination of Arabidopsis fluorescent protein biosensor lines, in vitro assays, and genetic and pharmacological approaches. We show that previously linked physiological parameters, including changes in cytosolic ATP, NADH/NAD+ ratio, cytosolic reactive oxygen species (ROS), pH, free Ca2+, and mitochondrial membrane potential, may often be correlated with-but are not the primary drivers of-MRR induction in plants. However, we demonstrate that the induced production of mitochondrial ROS is the likely primary trigger for MRR induction in Arabidopsis. Furthermore, we demonstrate that mitochondrial ROS-mediated signaling uses the ER-localized ANAC017-pathway to induce MRR response. Finally, our data suggest that mitochondrially generated ROS can induce MRR without substantially leaking into other cellular compartments such as the cytosol or ER lumen, as previously proposed. Overall, our results offer compelling evidence that mitochondrial ROS elevation is the likely trigger of MRR.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Arabidopsis/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo
7.
Redox Biol ; 69: 103015, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38183796

RESUMEN

Redox status of protein cysteinyl residues is mediated via glutathione (GSH)/glutaredoxin (GRX) and thioredoxin (TRX)-dependent redox cascades. An oxidative challenge can induce post-translational protein modifications on thiols, such as protein S-glutathionylation. Class I GRX are small thiol-disulfide oxidoreductases that reversibly catalyse S-glutathionylation and protein disulfide formation. TRX and GSH/GRX redox systems can provide partial backup for each other in several subcellular compartments, but not in the plastid stroma where TRX/light-dependent redox regulation of primary metabolism takes place. While the stromal TRX system has been studied at detail, the role of class I GRX on plastid redox processes is still unknown. We generate knockout lines of GRXC5 as the only chloroplast class I GRX of the moss Physcomitrium patens. While we find that PpGRXC5 has high activities in GSH-dependent oxidoreductase assays using hydroxyethyl disulfide or redox-sensitive GFP2 as substrates in vitro, Δgrxc5 plants show no detectable growth defect or stress sensitivity, in contrast to mutants with a less negative stromal EGSH (Δgr1). Using stroma-targeted roGFP2, we show increased protein Cys steady state oxidation and decreased reduction rates after oxidative challenge in Δgrxc5 plants in vivo, indicating kinetic uncoupling of the protein Cys redox state from EGSH. Compared to wildtype, protein Cys disulfide formation rates and S-glutathionylation levels after H2O2 treatment remained unchanged. Lack of class I GRX function in the stroma did not result in impaired carbon fixation. Our observations suggest specific roles for GRXC5 in the efficient transfer of electrons from GSH to target protein Cys as well as negligible cross-talk with metabolic regulation via the TRX system. We propose a model for stromal class I GRX function in efficient catalysis of protein dithiol/disulfide equilibria upon redox steady state alterations affecting stromal EGSH and highlight the importance of identifying in vivo target proteins of GRXC5.


Asunto(s)
Glutarredoxinas , Peróxido de Hidrógeno , Peróxido de Hidrógeno/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Oxidación-Reducción , Glutatión/metabolismo , Estrés Oxidativo , Cloroplastos/metabolismo , Disulfuros/química
9.
Plant J ; 117(5): 1466-1486, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38059656

RESUMEN

The establishment of moss spores is considered a milestone in plant evolution. They harbor protein networks underpinning desiccation tolerance and accumulation of storage compounds that can be found already in algae and that are also utilized in seeds and pollen. Furthermore, germinating spores must produce proteins that drive the transition through heterotrophic growth to the autotrophic plant. To get insight into the plasticity of this proteome, we investigated it at five timepoints of moss (Physcomitrium patens) spore germination and in protonemata and gametophores. The comparison to previously published Arabidopsis proteome data of seedling establishment showed that not only the proteomes of spores and seeds are functionally related, but also the proteomes of germinating spores and young seedlings. We observed similarities with regard to desiccation tolerance, lipid droplet proteome composition, control of dormancy, and ß-oxidation and the glyoxylate cycle. However, there were also striking differences. For example, spores lacked any obvious storage proteins. Furthermore, we did not detect homologs to the main triacylglycerol lipase in Arabidopsis seeds, SUGAR DEPENDENT1. Instead, we discovered a triacylglycerol lipase of the oil body lipase family and a lipoxygenase as being the overall most abundant proteins in spores. This finding indicates an alternative pathway for triacylglycerol degradation via oxylipin intermediates in the moss. The comparison of spores to Nicotiana tabacum pollen indicated similarities for example in regards to resistance to desiccation and hypoxia, but the overall developmental pattern did not align as in the case of seedling establishment and spore germination.


Asunto(s)
Arabidopsis , Bryopsida , Arabidopsis/metabolismo , Proteoma/metabolismo , Germinación , Procesos Heterotróficos , Lipasa/metabolismo , Plantones/metabolismo , Esporas/metabolismo , Bryopsida/metabolismo , Semillas/metabolismo
10.
Plant Physiol Biochem ; 201: 107862, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37413941

RESUMEN

Evidence suggests that guard cells have higher rate of phosphoenolpyruvate carboxylase (PEPc)-mediated dark CO2 assimilation than mesophyll cells. However, it is unknown which metabolic pathways are activated following dark CO2 assimilation in guard cells. Furthermore, it remains unclear how the metabolic fluxes throughout the tricarboxylic acid (TCA) cycle and associated pathways are regulated in illuminated guard cells. Here we carried out a13C-HCO3 labelling experiment in tobacco guard cells harvested under continuous dark or during the dark-to-light transition to elucidate principles of metabolic dynamics downstream of CO2 assimilation. Most metabolic changes were similar between dark-exposed and illuminated guard cells. However, illumination altered the metabolic network structure of guard cells and increased the 13C-enrichment in sugars and metabolites associated to the TCA cycle. Sucrose was labelled in the dark, but light exposure increased the 13C-labelling and leads to more drastic reductions in the content of this metabolite. Fumarate was strongly labelled under both dark and light conditions, while illumination increased the 13C-enrichment in pyruvate, succinate and glutamate. Only one 13C was incorporated into malate and citrate in either dark or light conditions. Our results indicate that several metabolic pathways are redirected following PEPc-mediated CO2 assimilation in the dark, including gluconeogenesis and the TCA cycle. We further showed that the PEPc-mediated CO2 assimilation provides carbons for gluconeogenesis, the TCA cycle and glutamate synthesis and that previously stored malate and citrate are used to underpin the specific metabolic requirements of illuminated guard cells.


Asunto(s)
Dióxido de Carbono , Malatos , Malatos/metabolismo , Dióxido de Carbono/metabolismo , Células del Mesófilo/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Citratos/metabolismo
11.
Plant J ; 116(4): 1172-1193, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37522418

RESUMEN

Diurnal dark to light transition causes profound physiological changes in plant metabolism. These changes require distinct modes of regulation as a unique feature of photosynthetic lifestyle. The activities of several key metabolic enzymes are regulated by light-dependent post-translational modifications (PTM) and have been studied at depth at the level of individual proteins. In contrast, a global picture of the light-dependent PTMome dynamics is lacking, leaving the response of a large proportion of cellular function undefined. Here, we investigated the light-dependent metabolome and proteome changes in Arabidopsis rosettes in a time resolved manner to dissect their kinetic interplay, focusing on phosphorylation, lysine acetylation, and cysteine-based redox switches. Of over 24 000 PTM sites that were detected, more than 1700 were changed during the transition from dark to light. While the first changes, as measured 5 min after onset of illumination, occurred mainly in the chloroplasts, PTM changes at proteins in other compartments coincided with the full activation of the Calvin-Benson cycle and the synthesis of sugars at later timepoints. Our data reveal connections between metabolism and PTM-based regulation throughout the cell. The comprehensive multiome profiling analysis provides unique insight into the extent by which photosynthesis reprograms global cell function and adds a powerful resource for the dissection of diverse cellular processes in the context of photosynthetic function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fotosíntesis , Procesamiento Proteico-Postraduccional , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo
12.
Plant J ; 114(5): 1059-1079, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37029527

RESUMEN

The flexibility of plant growth, development and stress responses is choreographed by an intricate network of signaling cascades and genetic programs. However, it is metabolism that ultimately executes these programs through the selective delivery of specific building blocks and energy. Photosynthetic carbon fixation is the central pillar of the plant metabolic network, the functioning of which is conditioned by environmental fluctuations. Hence, regulation of carbon assimilation metabolism must be particularly versatile and rapid to maintain efficiency and avoid dysfunction. While changes in gene expression can adjust the global inventory and abundance of relevant proteins, their specific characteristics are dynamically altered at the post-translational level. Here we highlight studies that show the extent of the regulatory impact by post-translational modification (PTM) on carbon assimilation metabolism. We focus on examples for which there has been empirical evidence of functional changes associated with a PTM, rather than just the occurrence of PTMs at specific sites in proteins, as regularly detected in proteomic studies. The examples indicate that we are only at the beginning of deciphering the PTM-based regulatory network that operates in plant cells. However, it is becoming increasingly clear that targeted exploitation of PTM engineering has the potential to control the metabolic flux landscape as a prerequisite for increasing crop yields, modifying metabolite composition, optimizing stress tolerance, and even executing novel growth and developmental programs.


Asunto(s)
Carbono , Proteómica , Carbono/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Redes y Vías Metabólicas
13.
Sci Adv ; 9(1): eabq4558, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608135

RESUMEN

Critical transition can occur in many real-world systems. The ability to forecast the occurrence of transition is of major interest in a range of contexts. Various early warning signals (EWSs) have been developed to anticipate the coming critical transition or distinguish types of transition. However, no effective method allows to establish practical threshold indicating the condition when the critical transition is most likely to occur. Here, we introduce a powerful EWS, named dynamical eigenvalue (DEV), that is rooted in bifurcation theory of dynamical systems to estimate the dominant eigenvalue of the system. Theoretically, the absolute value of DEV approaches 1 when the system approaches bifurcation, while its position in the complex plane indicates the type of transition. We demonstrate the efficacy of the DEV approach in model systems with known bifurcation types and also test the DEV approach on various critical transitions in real-world systems.

14.
New Phytol ; 238(1): 96-112, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36464787

RESUMEN

Plant submergence stress is a growing problem for global agriculture. During desubmergence, rising O2 concentrations meet a highly reduced mitochondrial electron transport chain (mETC) in the cells. This combination favors the generation of reactive oxygen species (ROS) by the mitochondria, which at excess can cause damage. The cellular mechanisms underpinning the management of reoxygenation stress are not fully understood. We investigated the role of alternative NADH dehydrogenases (NDs), as components of the alternative mETC in Arabidopsis, in anoxia-reoxygenation stress management. Simultaneous loss of the matrix-facing NDs, NDA1 and NDA2, decreased seedling survival after reoxygenation, while overexpression increased survival. The absence of NDAs led to reduced maximum potential quantum efficiency of photosystem II linking the alternative mETC to photosynthetic function in the chloroplast. NDA1 and NDA2 were induced upon reoxygenation, and transcriptional activation of NDA1 was controlled by the transcription factors ANAC016 and ANAC017 that bind to the mitochondrial dysfunction motif (MDM) in the NDA1 promoter. The absence of NDA1 and NDA2 did not alter recovery of cytosolic ATP levels and NADH : NAD+ ratio at reoxygenation. Rather, the absence of NDAs led to elevated ROS production, while their overexpression limited ROS. Our observations indicate that the control of ROS formation by the alternative mETC is important for photosynthetic recovery and for seedling survival of anoxia-reoxygenation stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , NAD/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Fotosíntesis , Oxidorreductasas/metabolismo , Hipoxia/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
16.
Plant Cell ; 34(11): 4428-4452, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35938694

RESUMEN

Ca2+ signaling is central to plant development and acclimation. While Ca2+-responsive proteins have been investigated intensely in plants, only a few Ca2+-permeable channels have been identified, and our understanding of how intracellular Ca2+ fluxes is facilitated remains limited. Arabidopsis thaliana homologs of the mammalian channel-forming mitochondrial calcium uniporter (MCU) protein showed Ca2+ transport activity in vitro. Yet, the evolutionary complexity of MCU proteins, as well as reports about alternative systems and unperturbed mitochondrial Ca2+ uptake in knockout lines of MCU genes, leave critical questions about the in vivo functions of the MCU protein family in plants unanswered. Here, we demonstrate that MCU proteins mediate mitochondrial Ca2+ transport in planta and that this mechanism is the major route for fast Ca2+ uptake. Guided by the subcellular localization, expression, and conservation of MCU proteins, we generated an mcu triple knockout line. Using Ca2+ imaging in living root tips and the stimulation of Ca2+ transients of different amplitudes, we demonstrated that mitochondrial Ca2+ uptake became limiting in the triple mutant. The drastic cell physiological phenotype of impaired subcellular Ca2+ transport coincided with deregulated jasmonic acid-related signaling and thigmomorphogenesis. Our findings establish MCUs as a major mitochondrial Ca2+ entry route in planta and link mitochondrial Ca2+ transport with phytohormone signaling.


Asunto(s)
Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Mamíferos/metabolismo
17.
Plant Cell ; 34(10): 4007-4027, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35818121

RESUMEN

Oxidative protein folding in the endoplasmic reticulum (ER) depends on the coordinated action of protein disulfide isomerases and ER oxidoreductins (EROs). Strict dependence of ERO activity on molecular oxygen as the final electron acceptor implies that oxidative protein folding and other ER processes are severely compromised under hypoxia. Here, we isolated viable Arabidopsis thaliana ero1 ero2 double mutants that are highly sensitive to reductive stress and hypoxia. To elucidate the specific redox dynamics in the ER in vivo, we expressed the glutathione redox potential (EGSH) sensor Grx1-roGFP2iL-HDEL with a midpoint potential of -240 mV in the ER of Arabidopsis plants. We found EGSH values of -241 mV in wild-type plants, which is less oxidizing than previously estimated. In the ero1 ero2 mutants, luminal EGSH was reduced further to -253 mV. Recovery to reductive ER stress induced by dithiothreitol was delayed in ero1 ero2. The characteristic signature of EGSH dynamics in the ER lumen triggered by hypoxia was affected in ero1 ero2 reflecting a disrupted balance of reductive and oxidizing inputs, including nascent polypeptides and glutathione entry. The ER redox dynamics can now be dissected in vivo, revealing a central role of EROs as major redox integrators to promote luminal redox homeostasis.


Asunto(s)
Arabidopsis , Proteína Disulfuro Isomerasas , Arabidopsis/genética , Arabidopsis/metabolismo , Ditiotreitol , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Glutatión/metabolismo , Hipoxia , Oxidación-Reducción , Oxígeno/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína
18.
Methods Mol Biol ; 2526: 65-85, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35657512

RESUMEN

Plant cells produce reactive oxygen species (ROS) as by-products of oxygen metabolism and for signal transduction. Depending on their concentration and their site of production, ROS can cause oxidative damage within the cell and must be effectively scavenged. Detoxification of the most stable ROS, hydrogen peroxide (H2O2), via the glutathione-ascorbate pathway may transiently alter the glutathione redox potential (EGSH). Changes in EGSH can thus be considered as an indicator of the oxidative load in the cell. Genetically encoded probes based on roGFP2 enable extended opportunities for in vivo monitoring of H2O2 and EGSH dynamics. Here, we provide detailed protocols for live monitoring of both parameters in the cytosol with the probes Grx1-roGFP2 for EGSH and roGFP2-Orp1 for H2O2, respectively. The protocols have been adapted for live cell imaging with high lateral resolution on a confocal microscope and for multi-parallel measurements in whole organs or intact seedlings in a fluorescence microplate reader. Elicitor-induced ROS generation is used for illustration of the opportunities for dynamic ROS measurements that can be transferred to other research questions and model systems.


Asunto(s)
Glutatión , Peróxido de Hidrógeno , Citosol/metabolismo , Glutatión/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
20.
Antioxid Redox Signal ; 37(1-3): 1-18, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35072524

RESUMEN

Aims: Genetically encoded green fluorescent protein (GFP)-based redox biosensors are widely used to monitor specific and dynamic redox processes in living cells. Over the last few years, various biosensors for a variety of applications were engineered and enhanced to match the organism and cellular environments, which should be investigated. In this context, the unicellular intraerythrocytic parasite Plasmodium, the causative agent of malaria, represents a challenge, as the small size of the organism results in weak fluorescence signals that complicate precise measurements, especially for cell compartment-specific observations. To address this, we have functionally and structurally characterized an enhanced redox biosensor superfolder roGFP2 (sfroGFP2). Results: SfroGFP2 retains roGFP2-like behavior, yet with improved fluorescence intensity (FI) in cellulo. SfroGFP2-based redox biosensors are pH insensitive in a physiological pH range and show midpoint potentials comparable with roGFP2-based redox biosensors. Using crystallography and rigidity theory, we identified the superfolding mutations as being responsible for improved structural stability of the biosensor in a redox-sensitive environment, thus explaining the improved FI in cellulo. Innovation: This work provides insight into the structure and function of GFP-based redox biosensors. It describes an improved redox biosensor (sfroGFP2) suitable for measuring oxidizing effects within small cells where applicability of other redox sensor variants is limited. Conclusion: Improved structural stability of sfroGFP2 gives rise to increased FI in cellulo. Fusion to hGrx1 (human glutaredoxin-1) provides the hitherto most suitable biosensor for measuring oxidizing effects in Plasmodium. This sensor is of major interest for studying glutathione redox changes in small cells, as well as subcellular compartments in general. Antioxid. Redox Signal. 37, 1-18.


Asunto(s)
Técnicas Biosensibles , Glutatión , Plasmodium , Técnicas Biosensibles/métodos , Glutatión/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Oxidación-Reducción , Plasmodium/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA