Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 318: 120940, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36566921

RESUMEN

Passive sampling methods offer several advantages over traditional grab water sampling techniques, including time-integrative results which better represent long-term concentrations at the site and separation of the freely dissolved fraction of the contaminant which offers insight into the associated risk. This paper describes the performance of a newly developed equilibrium regimen passive sampler designed specifically for per- and polyfluoroalkyl substances (PFAS), called PFAS INSIGHT®. The sampler is effective in sampling ionic (sulfonates and carboxylates) and non-ionic (PFAS precursors) PFAS from aqueous solutions with detection limits similar or lower (depending on the analyte) to those achievable with conventional water sample analysis. Results include laboratory characterization of sorbent adsorption kinetics and adsorption isotherms for 15 PFAS analytes with carbon chain lengths of 4-12, the effects of the sample matrix on PFAS partitioning, and sorbent extraction efficiency. Results from PFAS INSIGHT® field deployments demonstrate good agreement between the concentrations calculated from the passive sampler data and the concentrations measured directly in conventional water samples. Approximately 35% of the passive sampling results were within 2-fold of the conventional water sample concentrations, 71% within 5-fold, and 88% within 10-fold.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Agua/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis
2.
J Environ Manage ; 289: 112439, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33819657

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a large class of chemicals widely used for many commercial and industrial applications and have resulted in contamination at sites across globally. Pump-and-treat systems, groundwater extraction, and ex situ treatment using granular activated carbon (GAC) are being implemented, either in full or pilot scale, to treat PFAS-impacted groundwater and drinking water. The only current method of regenerating spent GAC is to reactivate it at temperatures greater than 1000 °C, which requires large amounts of energy and is quite expensive. This research focused on development and demonstration of an effective GAC regeneration technology using a solvent-based method for PFAS-laden GAC used in water treatment. Two different organic solvents (ethanol and isopropyl alcohol) with 0.5% and 1.0% ammonium hydroxide (NH4OH) as a base additive were tested to determine the most effective regenerant solution to remove PFAS from the contaminated GAC. Based on column tests using laboratory-contaminated GAC with perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate (PFOS), the solvent-base mix (SBM) of ethanol with 0.5% NH4OH was found to be the optimum performing regenerant solution. The GAC life span assessment showed that solvent-regenerated GAC performed similar to virgin GAC without losing its optimal performance of PFAS sorption. Further, the solvent-regenerated GAC showed optimal performance even after four cycles of solvent regenerations tested using the optimum SBM. Average percent removal in laboratory-contaminated GAC using the optimum SBM was 65% and 93% for PFOS and PFOA, respectively. Four field-spent GAC samples were also regenerated using the optimum SBM. Percent removal from these samples was found to be in range of 55%-68%. The type of GAC used, level of contamination and type of PFAS present, water type and quality, and the presence of co-contaminants may have influenced the removal capacity. Distillation experiments have shown that it is feasible to concentrate the spent solvent prior to disposal, which reduces the amount of PFAS-contaminated solvent waste produced in regeneration cycles.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico , Fluorocarburos/análisis , Solventes , Tecnología , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA