Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 323, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658193

RESUMEN

In plants, the topological organization of membranes has mainly been attributed to the cell wall and the cytoskeleton. Additionally, few proteins, such as plant-specific remorins have been shown to function as protein and lipid organizers. Root nodule symbiosis requires continuous membrane re-arrangements, with bacteria being finally released from infection threads into membrane-confined symbiosomes. We found that mutations in the symbiosis-specific SYMREM1 gene result in highly disorganized perimicrobial membranes. AlphaFold modelling and biochemical analyses reveal that SYMREM1 oligomerizes into antiparallel dimers and may form a higher-order membrane scaffolding structure. This was experimentally confirmed when expressing this and other remorins in wall-less protoplasts is sufficient where they significantly alter and stabilize de novo membrane topologies ranging from membrane blebs to long membrane tubes with a central actin filament. Reciprocally, mechanically induced membrane indentations were equally stabilized by SYMREM1. Taken together we describe a plant-specific mechanism that allows the stabilization of large-scale membrane conformations independent of the cell wall.


Asunto(s)
Proteínas Portadoras , Fosfoproteínas , Proteínas Portadoras/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Simbiosis
2.
Curr Biol ; 31(12): 2712-2719.e5, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33930305

RESUMEN

Legumes have maintained the ability to associate with rhizobia to sustain the nitrogen-fixing root nodule symbiosis (RNS). In Medicago truncatula, the Nod factor (NF)-dependent intracellular root colonization by Sinorhizobium meliloti initiates from young, growing root hairs. They form rhizobial traps by physically curling around the symbiont.1,2 Although alterations in root hair morphology like branching and swelling have been observed in other plants in response to drug treatments3 or genetic perturbations,4-6 full root hair curling represents a rather specific invention in legumes. The entrapment of the symbiont completes with its full enclosure in a structure called the "infection chamber" (IC),1,2,7,8 from which a tube-like membrane channel, the "infection thread" (IT), initiates.1,2,9 All steps of rhizobium-induced root hair alterations are aided by a tip-localized cytosolic calcium gradient,10,11 global actin re-arrangements, and dense subapical fine actin bundles that are required for the delivery of Golgi-derived vesicles to the root hair tip.7,12-14 Altered actin dynamics during early responses to NFs or rhizobia have mostly been shown in mutants that are affected in the actin-related SCAR/WAVE complex.15-18 Here, we identified a polarly localized SYMBIOTIC FORMIN 1 (SYFO1) to be required for NF-dependent alterations in membrane organization and symbiotic root hair responses. We demonstrate that SYFO1 mediates a continuum between the plasma membrane and the cell wall that is required for the onset of rhizobial infections.


Asunto(s)
Medicago truncatula , Rhizobium , Actinas , Membrana Celular , Pared Celular , Forminas , Medicago truncatula/genética , Microtúbulos , Proteínas de Plantas/genética , Raíces de Plantas , Simbiosis
3.
BMC Plant Biol ; 15: 247, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26458871

RESUMEN

BACKGROUND: Glycogen Synthase Kinase 3/SHAGGY-like kinases (GSKs) are multifunctional non-receptor ser/thr kinases. Plant GSKs are involved in hormonal signaling networks and are required for growth, development, light as well as stress responses. So far, most studies have been carried out on Arabidopsis or on other eudicotyledon GSKs. Here, we evaluated the role of TaSK1 and TaSK2, two homolog wheat (Triticum aestivum) GSKs, in brassinosteroid signaling. We explored in addition the physiological effects of brassinosteroids on wheat growth and development. RESULTS: A bin2-1 like gain-of-function mutation has been inserted respectively in one of the homoeologous gene copies of TaSK1 (TaSK1-A.2-1) and in one of the homoeologous gene copies of TaSK2 (TaSK2-A.2-1). Arabidopsis plants were transformed with these mutated gene copies. Severe dwarf phenotypes were obtained closely resembling those of Arabidopsis bin2-1 lines and Arabidopsis BR-deficient or BR-signaling mutants. Expression of BR downstream genes, SAUR-AC1, CPD and BAS1 was deregulated in TaSK1.2-1 and TaSK2.2-1 transgenic lines. Severe dwarf lines were partially rescued by Bikinin beforehand shown to inhibit TaSK kinase activity. This rescue was accompanied with changes in BR downstream gene expression levels. Wheat embryos and seedlings were treated with compounds interfering with BR signaling or modifying BR levels to gain insight into the role of brassinosteroids in wheat development. Embryonic axis and scutellum differentiation were impaired, and seedling growth responses were affected when embryos were treated with Epibrassinolides, Propiconazole, and Bikinin. CONCLUSIONS: In view of our findings, TaSKs are proposed to be involved in BR signaling and to be orthologous of Arabidopsis Clade II GSK3/SHAGGY-like kinases. Observed effects of Epibrassinolide, Propiconazole and Bikinin treatments on wheat embryos and seedlings indicate a role for BR signaling in embryonic patterning and seedling growth.


Asunto(s)
Brasinoesteroides/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Transducción de Señal , Triticum/enzimología , Aminopiridinas/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación/genética , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Homología de Secuencia de Aminoácido , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Succinatos/farmacología , Triazoles/farmacología , Triticum/efectos de los fármacos , Triticum/genética , Triticum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA