Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anim Sci ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279203

RESUMEN

It was hypothesized that the longissimus thoracis (LT) muscle proteome, phosphoproteome, and metabolome could explain postmortem metabolism and tenderness differences in muscle from cattle supplemented zinc (Zn) and/or ractopamine hydrochloride (RH). High percentage Angus steers (N=20) were fed in a 2x2 factorial assigned to Zn and RH treatments: control (CON; n=10; analyzed 36 mg Zn/kg dry matter [DM]) or supranutritional Zn supplementation (SUPZN; n=10; control diet + 60 mg Zn/kg DM [from ZnSO4] + 60 mg Zn/kg DM [from Zn-amino acid complex]) for the entire 89-d trial. During the 28 d before harvest, steers were blocked by body weight within Zn treatments to RH treatments of 0 (NO; n=10) or 300 mg (RAC; n=10) per steer per day. Steers were harvested at the Iowa State Meat Laboratory, where pH decline (1, 3, 6, and 24 h postmortem) was measured. At 24 h postmortem, LT muscle sections were removed from carcasses, and steaks were analyzed for Warner-Bratzler shear force (WBSF) values at 1, 3, 7, and 14 d postmortem. Muscle samples were taken at 1 h, 1, 3, 7, and 14 d postmortem for the following analysis: troponin-T degradation (1, 3, 7, and 14 d postmortem), myosin heavy chain (MHC) analysis (1 h postmortem), sarcoplasmic proteome analysis through tandem mass tagging analysis (TMT; 1 h and 1 d postmortem), metabolome analysis (1 h and 1 d postmortem), and phosphoproteome analysis (1 h postmortem). SUPZN-NO tended to have a lower (P=0.06) pH at 6 h postmortem and a lower WBSF value (P=0.06) at 1 d postmortem. CON-RAC had a higher (P=0.04) pH at 6 h postmortem and WBSF value (P<0.01) at 1 d postmortem. A lower pH at 6 h postmortem and lower WBSF value at 1 d postmortem in the SUPZN-NO treatment was accompanied by more sorbitol and fructose at 1 d postmortem, and less myosin regulatory light chain 2 at 1 h postmortem, and less adenosine monophosphate deaminase 1 (AMPD1) at 1 d postmortem than all other treatments. A higher pH at 6 h postmortem and higher WBSF value at 1 d postmortem in CON-RAC and SUPZN-RAC was accompanied by more soluble structural proteins (troponin-T and myosin-7) at 1 h postmortem than CON-NO. At 1 h postmortem, CON-RAC had more glyceraldehyde-3-phosphate dehydrogenase than CON-NO or SUPZN-RAC. Differences in energy metabolism enzymes, metabolites, and structural proteins may affect ATP production, rigor development, and lactate buildup which may explain the differences in postmortem metabolism and tenderness development at 1 d postmortem.

2.
Meat Sci ; 205: 109321, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37643525

RESUMEN

Matrix metalloproteinases (MMPs) are responsible for the turnover of intramuscular connective tissue in live animals. We hypothesize that MMPs may play a role in postmortem aging of beef muscles for the degradation of connective tissues. Four different experiments were performed to: 1) characterize MMP activity during postmortem aging of beef; 2) determine if the native beef MMP can contribute to connective tissue degradation in a simulated standard industry postmortem aging condition; 3) explore approaches to improve the native beef MMP activity and 4) characterize MMP activity in beef from cattle supplemented with supranutritional level of Zn. In experiment 1, MMP was active throughout the entire aging periods (3, 21, 42 and 63 d) for beef muscles Longissimus lumborum, Gluteus medius and Gastrocnemius, and the unknown MMP responsible for the collagen degradation was identified as MMP-9 by Western Blot. In experiment 2 and 3, MMP-9 activity was noticeable in the gels after 42 d of storage in the cooler. Moreover, the addition of ZnCl2 in the model system significantly increased MMP-9 activity when compared to the control (P < 0.01). In experiment 4, Longissimus thoracis from animals supplemented with a supranutritional Zn level had increased Zn availability and MMP-9 activity than those from animals fed with a control diet (P < 0.05). Further research is needed better understand MMP-9 mechanism during postmortem aging of meat. With a better understanding of MMP-9 in the aging process, the beef industry can provide better connective tissue management strategies for lower-quality beef cuts.


Asunto(s)
Colágeno , Metaloproteinasa 9 de la Matriz , Bovinos , Animales , Músculos , Envejecimiento , Suplementos Dietéticos
3.
J Proteomics ; 271: 104756, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36273510

RESUMEN

The objective was to identify metabolome and proteome differences at 1 h and 1 d postmortem between longissimus thoracis (LT) muscle classified based on 6 h pH values. Twenty beef LT rib sections were sorted based on 6 h postmortem pH values into low (LpH; pH < 5.55; n = 9) and high (HpH; pH > 5.84; n = 8) pH classifications. Warner-Bratzler shear force (WBSF), desmin degradation, and calpain-1 autolysis were measured. Two-dimensional difference in gel electrophoresis (3-10, 4-7, and 6-9 pH range) and Tandem mass tagging (TMT) protein analyses were employed to determine how the sarcoplasmic protein profile varied across pH classification. Non-targeted metabolomic analyses were conducted on extracts prepared at 1 h and 1 d postmortem. The LpH classification had a lower WBSF value at 1 d postmortem, which was explained by greater calpain-1 autolysis and desmin degradation at 1 d postmortem. Proteome and metabolome analysis revealed a phenotype that promotes more rapid energy metabolism in the LpH group. Proteome and metabolome analyses identified energy production, apoptotic, calcium homeostasis, and proteasome systems influencing pH classifications that could explain the observed pH, proteolysis, and beef tenderness differences. SIGNIFICANCE: This study is the first to identify proteomic and metabolomic variations early (1 h and 1 day) postmortem that are linked to differences in early (6 h) postmortem pH values and to tenderness differences at 1 day postmortem. This study integrates postmortem biochemical features (protein degradation, proteome, and metabolome variations) to postmortem pH decline and eating quality of beef steaks. Potential biomarkers of more rapid postmortem metabolism linked to earlier tenderization in beef are suggested. Identification of these biochemical features will assist in predicting the eating quality of beef products.


Asunto(s)
Calpaína , Carne , Animales , Bovinos , Carne/análisis , Desmina/metabolismo , Cambios Post Mortem , Proteoma/metabolismo , Músculo Esquelético/metabolismo , Proteómica , Músculos/metabolismo , Músculos Paraespinales , Metaboloma , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA