Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272626

RESUMEN

In neuroimaging, there is no equivalent alternative to magnetic resonance imaging (MRI). However, image acquisitions are generally time-consuming, which may limit utilization in some cases, e.g., in patients who cannot remain motionless for long or suffer from claustrophobia, or in the event of extensive waiting times. For multiple sclerosis (MS) patients, MRI plays a major role in drug therapy decision-making. The purpose of this study was to evaluate whether an ultrafast, T2-weighted (T2w), deep learning-enhanced (DL), echo-planar-imaging-based (EPI) fluid-attenuated inversion recovery (FLAIR) sequence (FLAIRUF) that has targeted neurological emergencies so far might even be an option to detect MS lesions of the brain compared to conventional FLAIR sequences. Therefore, 17 MS patients were enrolled prospectively in this exploratory study. Standard MRI protocols and ultrafast acquisitions were conducted at 3 tesla (T), including three-dimensional (3D)-FLAIR, turbo/fast spin-echo (TSE)-FLAIR, and FLAIRUF. Inflammatory lesions were grouped by size and location. Lesion conspicuity and image quality were rated on an ordinal five-point Likert scale, and lesion detection rates were calculated. Statistical analyses were performed to compare results. Altogether, 568 different lesions were found. Data indicated no significant differences in lesion detection (sensitivity and positive predictive value [PPV]) between FLAIRUF and axially reconstructed 3D-FLAIR (lesion size ≥3 mm × ≥2 mm) and no differences in sensitivity between FLAIRUF and TSE-FLAIR (lesion size ≥3 mm total). Lesion conspicuity in FLAIRUF was similar in all brain regions except for superior conspicuity in the occipital lobe and inferior conspicuity in the central brain regions. Further findings include location-dependent limitations of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as artifacts such as spatial distortions in FLAIRUF. In conclusion, FLAIRUF could potentially be an expedient alternative to conventional methods for brain imaging in MS patients since the acquisition can be performed in a fraction of time while maintaining good image quality.

2.
Acad Radiol ; 31(1): 180-186, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37280126

RESUMEN

RATIONALE AND OBJECTIVES: Fluid-attenuated inversion recovery (FLAIR) imaging is playing an increasingly significant role in the detection of brain metastases with a concomitant increase in the number of magnetic resonance imaging (MRI) examinations. Therefore, the purpose of this study was to investigate the impact on image quality and diagnostic confidence of an innovative deep learning-based accelerated FLAIR (FLAIRDLR) sequence of the brain compared to conventional (standard) FLAIR (FLAIRS) imaging. MATERIALS AND METHODS: Seventy consecutive patients with staging cerebral MRIs were retrospectively enrolled in this single-center study. The FLAIRDLR was conducted using the same MRI acquisition parameters as the FLAIRS sequence, except for a higher acceleration factor for parallel imaging (from 2 to 4), which resulted in a shorter acquisition time of 1:39 minute instead of 2:40 minutes (-38%). Two specialized neuroradiologists evaluated the imaging datasets using a Likert scale that ranged from 1 to 4, with 4 indicating the best score for the following parameters: sharpness, lesion demarcation, artifacts, overall image quality, and diagnostic confidence. Additionally, the image preference of the readers and the interreader agreement were assessed. RESULTS: The average age of the patients was 63 ± 11years. FLAIRDLR exhibited significantly less image noise than FLAIRS, with P-values of< .001 and< .05, respectively. The sharpness of the images and the ability to detect lesions were rated higher in FLAIRDLR, with a median score of 4 compared to a median score of 3 in FLAIRS (P-values of<.001 for both readers). In terms of overall image quality, FLAIRDLR was rated superior to FLAIRS, with a median score of 4 vs 3 (P-values of<.001 for both readers). Both readers preferred FLAIRDLR in 68/70 cases. CONCLUSION: The feasibility of deep learning FLAIR brain imaging was shown with additional 38% reduction in examination time compared to standard FLAIR imaging. Furthermore, this technique has shown improvement in image quality, noise reduction, and lesion demarcation.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Humanos , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Encefálicas/patología , Artefactos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA