Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 477: 135190, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053063

RESUMEN

The World Health Organization categorizes air pollution as the presence of one or more contaminants in the atmosphere such as smoke, dust, and particulate matter like microplastics, which are considered a priority pollutant. However, only a few studies have been developed on atmospheric pollution, and knowledge about MPs in the atmosphere is still limited. Spider webs have been tested and used as a passive sampling approach to study anthropogenic pollution. Despite this, studies on microplastic contamination using spiderwebs as samplers are scarce. Thus, this study uses spider webs as passive indicators to investigate air quality regarding microplastic contamination in an urbanized area. Therefore, 30 sampling points were selected, and webs of Nephilingis cruentata were collected. The spider webs were dipped in KOH 10 %. After digestion, the solution was washed and sieved through a 90 µm geological sieve. The remaining material was transferred to a Petri dish with filter paper, quantified, and identified by type and color. The chemical composition of the polymers was determined using Raman spectroscopy. 3138 microplastics were identified (2973 filaments and 165 fragments). The most frequent colors were blue and black. Raman spectroscopy revealed five types of polymers: Isotactic Polypropylene, Polyethylene Terephthalate, Polyurethane, Polyamide, and Direct Polyethylene.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Microplásticos , Arañas , Microplásticos/análisis , Brasil , Animales , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Ciudades , Contaminación del Aire/análisis
2.
Sci Total Environ ; 922: 171283, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38423331

RESUMEN

Microplastic identification and distribution throughout oceans has become a great concern due to its substantial uprising and its consequent interactions with marine biota. Microplastics can be absorbed and adsorbed by several marine species owing to their very small size. Among these organisms are bivalves, including ones used as food for humans. In this context, this research aims to understand the absorption scale of microplastics by Tivela mactroides according to their size and consequently life stage. Thus, T. mactroides mussels were collected at Camburi Beach (Brazil) and grouped into 30 different size classes from 06 to 35 mm. Later, 20 specimens from each size class (N = 600) had the soft tissues removed and a pool was performed through digestion with 10 % KOH solution. Results showed the presence of microplastics in all size classes of T. mactroides, evidencing that organisms from 06 mm can already be contaminated by microplastics and a tendency of the number of microplastics particles to increase as shell size increases. Furthermore, the amount of blue filament-type MPs was significantly higher than the other types and colors. Additionally, analyzes performed by Raman spectroscopy showed that the blue filaments have a PET composition. Finally, larger individuals presented larger quantities of MPs, as well as larger filaments. This might suggest that there are differences between the assimilation of the size of MPs in the different size classes, i.e. that size makes a difference.


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Humanos , Animales , Microplásticos , Plásticos , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 895: 165156, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385493

RESUMEN

The presence of plastic debris in the marine environment has reached massive levels in the past decades. In marine environments, microplastics can exist for hundreds of years and the presence of microplastics in this environment has been reported since 1970 and since then has been considered ubiquitous. Mollusks are being used as microplastic pollution indicators, especially in coastal areas and bivalves are more often used in microplastic-monitoring studies. On the other hand, gastropods are poorly used as indicators for microplastic pollution, even though they are the most diverse group of mollusks. The sea hares of the genus Aplysia are herbivorous gastropods, important model organisms commonly used in neuroscience studies, isolating the compounds in their defensive ink. Until today, there is no previous record of the presence of MPs in Aplysia gastropods. Therefore, this study aims to investigate the presence of microplastics in tissues of A. brasiliana found in southeastern Brazil. We collected seven individuals of A. brasiliana from a beach in southeastern Brazil, dissected them to isolate the digestive tract and the gills, and digested the tissues with a solution of 10 % NaOH. In the end, 1021 microplastic particles were found, 940 in the digestive tissue, and 81 in the gills. These results represent the first record of the presence of microplastics in the Brazilian sea hare A. brasiliana.


Asunto(s)
Bivalvos , Liebres , Contaminantes Químicos del Agua , Humanos , Animales , Aplysia , Microplásticos , Plásticos , Brasil , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
4.
Sci Total Environ ; 880: 163219, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37011693

RESUMEN

Plastic debris has been reported in the marine environment since the '70s. These plastic materials are introduced into the marine environment in several sizes, one of them microplastics (MP), and they have drawn great interest and concern in the past decades. Consumption of MP can cause weight loss, feeding rate decrease, reproductive activity decrease, and several other negative effects. Ingestion of MPs has already been reported for some species of polychaetes but the use of these annelids in MP studies is still poorly reported. Costa et al. (2021) was the first study to investigate the capability of the reef-building polychaete Phragmatopoma caudata to incorporate microplastic in its colony's structures. This makes the colonies a reservoir of MP and thus they reflect the environment's quality regarding MP presence. Consequently, this specie becomes an important asset to MP pollution investigation in coastal areas. Therefore, this work aims to investigate the abundance of MPs on the coastline of Espírito Santo using P. caudata as an indicator of MP presence. For this, we collected samples of P. caudata colonies in 12 sampling sites along the Espírito Santo coast (three replicates at each site). These colony samples were processed to extract the MPs particles from the colony surface, its inner structure, and tissues from the individuals. These MPs were counted using a stereomicroscope and sorted according to their color and type (filament, fragment, and other). Statistical analysis was performed using GraphPad Prism 9.3.0. Significant values followed p < 0.05. We found MP particles in all 12 sampled beaches, configuring a pollution rate of 100 %. The number of filaments was notably greater than the number of fragments and others. The most impacted beaches were found inside the metropolitan region of the state. Finally, P. caudata is an efficient and trustable indicator of microplastic in coastal areas.


Asunto(s)
Poliquetos , Contaminantes Químicos del Agua , Humanos , Animales , Microplásticos/análisis , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA