Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; : 124911, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265772

RESUMEN

Macrolitter, especially macroplastics, (> 0.5 cm) negatively impact freshwater ecosystems, where they can be retained along lake shores, riverbanks, bed sediments or floodplains. Long-term and large-scale assessments of macrolitter on riverbanks and lake shores provide an understanding of litter abundance, composition, and origin in freshwater systems. Combining macrolitter quantification with hydrometeorological variables allows further study of leakage, transport, and accumulation characteristics. Several studies have explored the role of hydrometeorological factors in influencing macrolitter distribution and found that river discharge, runoff, and wind only partially explains its distribution. Other factors, such as land-use features, have not yet been thoroughly investigated. In this study, we provide a country-scale assessment of land-use influence on macrolitter abundance in freshwater systems. We analyzed the composition of the most commonly found macrolitter items (referred to as 'top items', n = 42,565) sampled across lake shores and riverbanks in Switzerland between April 2020 and May 2021. We explored the relationship between eleven land-use features and macrolitter abundance at survey locations (n = 143). The land-use features included buildings, city centers, public infrastructure, recreational areas, forests, marshlands, vineyards, orchards, other land, and rivers and canals. The majority of top items are significantly and positively correlated with land-use features related to urban coverage, notably roads and buildings. Over 60% of top items were found to be correlated with either roads or buildings. Notably, tobacco, food and beverage-related products, as well as packaging and sanitary products, showed strong associations with these urban land-use features. Other types of items, however, did not exhibit a relationship with land-use features, such as industry and construction-related items. Ultimately, this highlights the need to combine measures at the local and regional/national scales for effective litter reduction.

2.
Environ Pollut ; 345: 123524, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38355090

RESUMEN

Plastic pollution is ubiquitous in aquatic environments worldwide. Rivers connect terrestrial and marine ecosystems, playing a key role in the transport of land-based plastic waste towards the sea. Emerging research suggests that in estuaries and tidal rivers, tidal dynamics play a significant role in plastic transport and retention dynamics. To date, observations in these systems have been limited, and plastic transport dynamics during single tidal cycles remain poorly understood. Here, we investigated plastic transport, trapping, and re-mobilization of macroplastics (> 0.5 cm) in the Saigon River, focusing on short-term dynamics of individual tidal cycles. We used GPS trackers, released at different stages of the tidal cycle (ebb, flood, neap, spring). Plastic items demonstrated dynamic and intermittent transport behavior. Items spent almost half of the time (49%) temporarily stopped, mainly due to their entrapment in vegetation, infrastructure, or deposition on riverbanks. Items were almost always re-mobilized within 10 h (85%), leading to successive phases of stopping and transport. Tidal dynamics also resulted in bidirectional transport of plastic items, with median daily total transport distance within the 40 km study reach (8.9 km day-1) over four times larger than the median daily net distance (2.0 km day-1). The median retention time of plastic items within the reach was 21 days (mean = 202 days). In total, 81% of the retrieved items were trapped within water hyacinths, emphasizing the important role of floating vegetation on river plastic transport dynamics. With this paper, we aim to provide data-driven insights into macroplastic transport and retention dynamics in a tropical tidal river. These are crucial in the design of effective intervention and monitoring strategies, and estimating net plastic emission from rivers into the sea.


Asunto(s)
Ecosistema , Ríos , Ríos/química , Plásticos , Monitoreo del Ambiente , Estuarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA