Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 368(6494)2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32467361

RESUMEN

Li et al commented that our report claims that methods reported thus far cannot enable the production of high-purity corundum with surface areas greater than 100 m2 g-1, and that our obtained material could be porous aggregates rather than nanoparticles. We disagree with both of these suggestions.

2.
Science ; 366(6464): 485-489, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31649198

RESUMEN

In its nanoparticulate form, corundum (α-Al2O3) could lead to several applications. However, its production into nanoparticles (NPs) is greatly hampered by the high activation energy barrier for its formation from cubic close-packed oxides and the sporadic nature of its nucleation. We report a simple synthesis of nanometer-sized α-Al2O3 (particle diameter ~13 nm, surface areas ~140 m2 g-1) by the mechanochemical dehydration of boehmite (γ-AlOOH) at room temperature. This transformation is accompanied by severe microstructural rearrangements and might involve the formation of rare mineral phases, diaspore and tohdite, as intermediates. Thermodynamic calculations indicate that this transformation is driven by the shift in stability from boehmite to α-Al2O3 caused by milling impacts on the surface energy. Structural water in boehmite plays a crucial role in generating and stabilizing α-Al2O3 NPs.

3.
Angew Chem Int Ed Engl ; 58(33): 11262-11265, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31184405

RESUMEN

Supported catalysts are among the most important classes of catalysts. They are typically prepared by wet-chemical methods, such as impregnation or co-precipitation. Here we disclose that dry ball milling of macroscopic metal powder in the presence of a support oxide leads in many cases to supported catalysts with particles in the nanometer size range. Various supports, including TiO2 , Al2 O3 , Fe2 O3 , and Co3 O4 , and different metals, such as Au, Pt, Ag, Cu, and Ni, were studied, and for each of the supports and the metals, highly dispersed nanoparticles on supports could be prepared. The supported catalysts were tested in CO oxidation, where they showed activities in the same range as conventionally prepared catalysts. The method thus provides a simple and cost-effective alternative to the conventionally used impregnation methods.

4.
J Am Chem Soc ; 141(1): 315-322, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30560666

RESUMEN

Single chains of metal atoms are expected to be perfect one-dimensional nanowires in nanotechnology, due to their quantum nature including tunable electronic or spin coupling strengths. However, it is still rather difficult to fabricate such nanowires with metallic atoms under directional and separation control. Here, we succeeded in building higher-order single diamondoid-chains from the lower-order chains using a chemically well-controlled approach that employs diamondoids on metal surfaces. This approach results in higher-order diamondoid double chains by linking two neighboring single chains, and ultimately forms a central chain consisting of single Cu atoms suspended by the diamantane framework. The suspended Cu atoms are placed above the metal surface with a periodic distance of 0.67 ± 0.01 nm. Our bottom-up approach will allow detailed experimental investigations of the properties of these exciting suspended metal atoms (for example, quantized conductance, spin coupling, as well as transfer, etc.). Furthermore, we also identified different spatial configurations on the metal surfaces in on-surface reaction processes using high-resolution AFM imaging and density functional theory computations. Our findings broaden the on-surface synthesis concept from 2D planar aromatic molecules to 3D bulky aliphatic molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA