Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(25): 32739-32747, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38869014

RESUMEN

Liquid crystal-based actuators are receiving increased attention for their applications in wearables and biomedical or surgical devices, with selective actuation of individual parts/fingers still being in its infancy. This work presents the design and realization of two gripper devices with four individually addressable liquid-crystal network (LCN) actuators thermally driven via printed graphene-based heating elements. The resistive heat causes the all-organic actuator to bend due to anisotropic volume expansions of the splay-aligned sample. A heat transfer model that includes all relevant interfaces is presented and verified via thermal imaging, which provides good estimates of dimensions, power production, and resistance required to reach the desired temperature for actuation while maintaining safe electrical potentials. The LCN films displace up to 11 mm with a bending force of 1.10 mN upon application of 0-15 V potentials. The robustness of the LCN finger is confirmed by repetitive on/off switching for 500 cycles. Actuators are assembled into two prototypes able to grip and lift objects of small weights (70-100 mg) and perform complex actions by individually controlling one of the device's fingers to grip an additional object. Selective actuation of parts in soft robotic devices will enable more complex motions and actions to be performed.

2.
Biomacromolecules ; 25(7): 4203-4214, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38860966

RESUMEN

Water-borne coatings were prepared from poly(methyl methacrylate-co-butyl acrylate) latexes using different methacrylic acid containing macromonomers as stabilizers, and their physical properties were determined. The amphiphilic methacrylic acid macromonomers containing methyl, butyl, or lauryl methacrylate as hydrophobic comonomers were synthesized via catalytic chain transfer polymerization to give stabilizers with varying architecture, composition, and molar mass. A range of latexes of virtually the same composition was prepared by keeping the content of methacrylic acid groups during the emulsion polymerization constant and by only varying the microstructure of the macromonomers. These latexes displayed a range of rheological behaviors: from highly viscous and shear thinning to low viscous and Newtonian. The contact angles of the resulting coatings ranged from very hydrophilic (<10°) to almost hydrophobic (88°), and differences in hardness, roughness, and water vapor sorption and permeability were found.


Asunto(s)
Tensoactivos , Agua , Tensoactivos/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Reología , Polímeros/química , Metacrilatos/química , Viscosidad , Propiedades de Superficie , Polimerizacion
4.
Small Methods ; 5(12): e2100638, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928031

RESUMEN

Biocomposite structures are difficult to characterize by bulk approaches due to their morphological complexity and compositional heterogeneity. Therefore, a versatile method is required to assess, for example, the mechanical properties of geometrically simple parts of biocomposites at the relevant length scales. Here, it is demonstrated how a combination of Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and micromanipulators can be used to isolate, transfer, and determine the mechanical properties of frustule constituents of diatom Thalassiosira pseudonana (T.p.). Specifically, two parts of the diatom frustule, girdle bands and valves, are separated by FIB milling and manipulated using a sharp tungsten tip without compromising their physical or chemical integrity. In situ mechanical studies on isolated girdle bands combined with Finite Element Method (FEM) simulations, enables the quantitative assessment of the Young's modulus of this biosilica; E = 40.0 GPa. In addition, the mechanical strength of isolated valves could be measured by transferring and mounting them on top of premilled holes in the sample support. This approach may be extended to any hierarchical biocomposite material, regardless of its chemical composition, to isolate, transfer, and investigate the mechanical properties of selected constituents or specific regions.


Asunto(s)
Diatomeas/ultraestructura , Microtecnología/instrumentación , Fenómenos Biomecánicos , Módulo de Elasticidad , Análisis de Elementos Finitos , Microscopía Electrónica de Rastreo , Nanoestructuras , Espectrometría por Rayos X
5.
Sci Rep ; 10(1): 19498, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177559

RESUMEN

Diatoms are unicellular photosynthetic algae that produce a silica exoskeleton (frustule) which exposes a highly ordered nano to micro scale morphology. In recent years there has been a growing interest in modifying diatom frustules for technological applications. This is achieved by adding non-essential metals to the growth medium of diatoms which in turn modifies morphology, composition, and resulting properties of the frustule. Here, we investigate the frustule formation in diatom Pinnularia sp., including changes to overall morphology, silica thickness, and composition, in the presence of Al3+ ions at different concentrations. Our results show that in the presence of Al3+ the total silica uptake from the growth medium increases, although a decrease in the growth rate is observed. This leads to a higher inorganic content per diatom resulting in a decreased pore diameter and a thicker frustule as evidenced by electron microscopy. Furthermore, 27Al solid-state NMR, FIB-SEM, and EDS results confirm that Al3+ becomes incorporated into the frustule during the silicification process, thus, improving hydrolysis resistance. This approach may be extended to a broad range of elements and diatom species towards the scalable production of silica materials with tunable hierarchical morphology and chemical composition.


Asunto(s)
Diatomeas/química , Diatomeas/ultraestructura , Aluminio/química , Cationes/química , Diatomeas/efectos de los fármacos , Diatomeas/metabolismo , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanoestructuras/química , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Espectrometría por Rayos X , Termogravimetría
6.
ACS Nano ; 13(11): 12996-13005, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31633907

RESUMEN

Understanding and controlling the formation of nanoparticles at the surface of functional oxide supports is critical for tuning activity and stability for catalytic and energy conversion applications. Here, we use a latest generation environmental transmission electron microscope to follow the exsolution of individual nanoparticles at the surface of perovskite oxides, with ultrahigh spatial and temporal resolution. Qualitative and quantitative analysis of the data reveals the atomic scale processes that underpin the formation of the socketed, strain-inducing interface that confers exsolved particles their exceptional stability and reactivity. This insight also enabled us to discover that the shape of exsolved particles can be controlled by changing the atmosphere in which exsolution is carried out, and additionally, this could also produce intriguing heterostructures consisting of metal-metal oxide coupled nanoparticles. Our results not only provide insight into the in situ formation of nanoparticles but also demonstrate the tailoring of nanostructures and nanointerfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA