Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Radiat Prot Dosimetry ; 199(14): 1539-1550, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37721065

RESUMEN

Following large-scale radiation events, an overwhelming number of people will potentially need mitigators or treatment for radiation-induced injuries. This necessitates having methods to triage people based on their dose and its likely distribution, so life-saving treatment is directed only to people who can benefit from such care. Using estimates of victims following an improvised nuclear device striking a major city, we illustrate a two-tier approach to triage. At the second tier, after first removing most who would not benefit from care, biodosimetry should provide accurate dose estimates and determine whether the dose was heterogeneous. We illustrate the value of using in vivo electron paramagnetic resonance nail biodosimetry to rapidly assess dose and determine its heterogeneity using independent measurements of nails from the hands and feet. Having previously established its feasibility, we review the benefits and challenges of potential improvements of this method that would make it particularly suitable for tier 2 triage. Improvements, guided by a user-centered approach to design and development, include expanding its capability to make simultaneous, independent measurements and improving its precision and universality.


Asunto(s)
Uñas , Traumatismos por Radiación , Humanos , Triaje , Espectroscopía de Resonancia por Spin del Electrón , Mano
2.
Tissue Eng Part C Methods ; 28(6): 264-271, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35509263

RESUMEN

The purpose of this study was to assess the natural partial oxygen pressure (pO2) of subcutaneous (SC) and intraperitoneal (IP) sites in mice to determine their relative suitability as sites for placement of implants. The pO2 measurements were performed using oxygen imaging of solid probes using lithium phthalocyanine (LiPc) as the oxygen sensitive material. LiPc is a water-insoluble crystalline probe whose spin-lattice and spin-spin relaxation rates (R1 and R2) are sensitive to the local oxygen concentration. To facilitate direct in vivo oxygen imaging, we prepared a solid probe containing encapsulated LiPc crystals in polydimethylsiloxane (PDMS), an oxygen-permeable and bioinert polymer. Although LiPc-PDMS or similar probes have been used in repeated spectroscopic or average oxygen measurements using continuous wave electron paramagnetic resonance (EPR) since the late 1990s and now have advanced to clinical applications, they have not been used for pulse EPR oxygen imaging. One LiPc-PDMS probe of 2 mm diameter and 10 mm length was implanted in SC or IP sites (left or right side) in each animal. The pO2 imaging of implanted LiPc-PDMS probes was performed weekly for 6 weeks using O2M preclinical 25 mT oxygen imager, JIVA-25™, using the pulse inversion recovery electron spin echo method. At week 6, the probes were recovered, and histological examinations were performed. We report in this study, first-ever solid probe oxygen imaging of implanted devices and pO2 assessment of SC and IP sites.


Asunto(s)
Oxígeno , Polímeros , Animales , Espectroscopía de Resonancia por Spin del Electrón/métodos , Ratones , Presión Parcial , Marcadores de Spin
3.
Appl Magn Reson ; 52(10): 1321-1342, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34744319

RESUMEN

OBJECTIVES: (1) Summarize revisions made to the implantable resonator (IR) design and results of testing to characterize biocompatibility;(2) Demonstrate safety of implantation and feasibility of deep tissue oxygenation measurement using electron paramagnetic resonance (EPR) oximetry. STUDY DESIGN: In vitro testing of the revised IR and in vivo implantation in rabbit brain and leg tissues. METHODS: Revised IRs were fabricated with 1-4 OxyChips with a thin wire encapsulated with two biocompatible coatings. Biocompatibility and chemical characterization tests were performed. Rabbits were implanted with either an IR with 2 oxygen sensors or a biocompatible-control sample in both the brain and hind leg. The rabbits were implanted with IRs using a catheter-based, minimally invasive surgical procedure. EPR oximetry was performed for rabbits with IRs. Cohorts of rabbits were euthanized and tissues were obtained at 1 week, 3 months, and 9 months after implantation and examined for tissue reaction. RESULTS: Biocompatibility and toxicity testing of the revised IRs demonstrated no abnormal reactions. EPR oximetry from brain and leg tissues were successfully executed. Blood work and histopathological evaluations showed no significant difference between the IR and control groups. CONCLUSIONS: IRs were functional for up to 9 months after implantation and provided deep tissue oxygen measurements using EPR oximetry. Tissues surrounding the IRs showed no more tissue reaction than tissues surrounding the control samples. This pre-clinical study demonstrates that the IRs can be safely implanted in brain and leg tissues and that repeated, non-invasive, deep-tissue oxygen measurements can be obtained using in vivo EPR oximetry.

4.
Front Oncol ; 11: 743256, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660306

RESUMEN

OBJECTIVE: The overall objective of this clinical study was to validate an implantable oxygen sensor, called the 'OxyChip', as a clinically feasible technology that would allow individualized tumor-oxygen assessments in cancer patients prior to and during hypoxia-modification interventions such as hyperoxygen breathing. METHODS: Patients with any solid tumor at ≤3-cm depth from the skin-surface scheduled to undergo surgical resection (with or without neoadjuvant therapy) were considered eligible for the study. The OxyChip was implanted in the tumor and subsequently removed during standard-of-care surgery. Partial pressure of oxygen (pO2) at the implant location was assessed using electron paramagnetic resonance (EPR) oximetry. RESULTS: Twenty-three cancer patients underwent OxyChip implantation in their tumors. Six patients received neoadjuvant therapy while the OxyChip was implanted. Median implant duration was 30 days (range 4-128 days). Forty-five successful oxygen measurements were made in 15 patients. Baseline pO2 values were variable with overall median 15.7 mmHg (range 0.6-73.1 mmHg); 33% of the values were below 10 mmHg. After hyperoxygenation, the overall median pO2 was 31.8 mmHg (range 1.5-144.6 mmHg). In 83% of the measurements, there was a statistically significant (p ≤ 0.05) response to hyperoxygenation. CONCLUSIONS: Measurement of baseline pO2 and response to hyperoxygenation using EPR oximetry with the OxyChip is clinically feasible in a variety of tumor types. Tumor oxygen at baseline differed significantly among patients. Although most tumors responded to a hyperoxygenation intervention, some were non-responders. These data demonstrated the need for individualized assessment of tumor oxygenation in the context of planned hyperoxygenation interventions to optimize clinical outcomes.

5.
Adv Exp Med Biol ; 1072: 233-239, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30178351

RESUMEN

This paper considers the critical role that academics can have in the development of clinical innovations and especially how their impact can be optimized. The focus should be on establishing the safety and efficacy of new approaches while also incorporating human factors and human use considerations into the inventions. It is very advantageous to work in concert with the end-users (operators and clinicians) to help ensure that the innovation will be useful and feasible to be incorporated into actual clinical practice as intended. This strategy enables developments to tackle real clinical needs by providing novel strategies to improve patient care while using solutions that fit into clinical practice and that are welcomed by patients and clinical staff. These principles are illustrated by a case study of the development of clinical in vivo EPR oximetry.


Asunto(s)
Diseño de Equipo , Invenciones , Oximetría/métodos , Ingeniería Biomédica , Tecnología Biomédica , Humanos
6.
Health Phys ; 115(1): 140-150, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29787440

RESUMEN

Instrumentation and application methodologies for rapidly and accurately estimating individual ionizing radiation dose are needed for on-site triage in a radiological/nuclear event. One such methodology is an in vivo X-band, electron paramagnetic resonance, physically based dosimetry method to directly measure the radiation-induced signal in fingernails. The primary components under development are key instrument features, such as resonators with unique geometries that allow for large sampling volumes but limit radiation-induced signal measurements to the nail plate, and methodological approaches for addressing interfering signals in the nail and for calibrating dose from radiation-induced signal measurements. One resonator development highlighted here is a surface resonator array designed to reduce signal detection losses due to the soft tissues underlying the nail plate. Several surface resonator array geometries, along with ergonomic features to stabilize fingernail placement, have been tested in tissue-equivalent nail models and in vivo nail measurements of healthy volunteers using simulated radiation-induced signals in their fingernails. These studies demonstrated radiation-induced signal detection sensitivities and quantitation limits approaching the clinically relevant range of ≤ 10 Gy. Studies of the capabilities of the current instrument suggest that a reduction in the variability in radiation-induced signal measurements can be obtained with refinements to the surface resonator array and ergonomic features of the human interface to the instrument. Additional studies are required before the quantitative limits of the assay can be determined for triage decisions in a field application of dosimetry. These include expanded in vivo nail studies and associated ex vivo nail studies to provide informed approaches to accommodate for a potential interfering native signal in the nails when calculating the radiation-induced signal from the nail plate spectral measurements and to provide a method for calibrating dose estimates from the radiation-induced signal measurements based on quantifying experiments in patients undergoing total-body irradiation or total-skin electron therapy.


Asunto(s)
Bioensayo/métodos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Mecanotransducción Celular/efectos de la radiación , Uñas/química , Radiometría/métodos , Triaje/normas , Humanos , Uñas/efectos de la radiación , Dosis de Radiación
7.
Cell Biochem Biophys ; 75(3-4): 275-283, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28687906

RESUMEN

Hypoxic tumors are more resistant to radiotherapy and chemotherapy, which decreases the efficacy of these common forms of treatment. We have been developing implantable paramagnetic particulates to measure oxygen in vivo using electron paramagnetic resonance. Once implanted, oxygen can be measured repeatedly and non-invasively in superficial tissues (<3 cm deep), using an electron paramagnetic resonance spectrometer and an external surface-loop resonator. To significantly extend the clinical applications of electron paramagnetic resonance oximetry, we developed an implantable resonator system to obtain measurements at deeper sites. This system has been used to successfully obtain oxygen measurements in animal studies for several years. We report here on recent developments needed to meet the regulatory requirements to make this technology available for clinical use. radio frequency heating is discussed and magnetic resonance compatibility testing of the device has been carried out by a Good Laboratory Practice-certified laboratory. The geometry of the implantable resonator has been modified to meet our focused goal of verifying safety and efficacy for the proposed use of intracranial measurements and also for future use in tissue sites other than the brain. We have encapsulated the device within a smooth cylindrical-shaped silicone elastomer to prevent tissues from adhering to the device and to limit perturbation of tissue during implantation and removal. We have modified the configuration for simultaneously measuring oxygen at multiple sites by developing a linear array of oxygen sensing probes, which each provide independent measurements. If positive results are obtained in additional studies which evaluate biocompatibility and chemical characterization, we believe the implantable resonator will be at a suitable stage for initial testing in human subjects.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Oximetría , Oxígeno/análisis , Animales , Diseño de Equipo , Humanos , Prótesis e Implantes
8.
Radiat Prot Dosimetry ; 172(1-3): 72-80, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27421468

RESUMEN

Several important recent advances in the development and evolution of in vivo Tooth Biodosimetry using Electron Paramagnetic Resonance (EPR) allow its performance to meet or exceed the U.S. targeted requirements for accuracy and ease of operation and throughput in a large-scale radiation event. Ergonomically based changes to the magnet, coupled with the development of rotation of the magnet and advanced software to automate collection of data, have made it easier and faster to make a measurement. From start to finish, measurements require a total elapsed time of 5 min, with data acquisition taking place in less than 3 min. At the same time, the accuracy of the data for triage of large populations has improved, as indicated using the metrics of sensitivity, specificity and area under the ROC curve. Applying these standards to the intended population, EPR in vivo Tooth Biodosimetry has approximately the same diagnostic accuracy as the purported 'gold standard' (dicentric chromosome assay). Other improvements include miniaturisation of the spectrometer, leading to the creation of a significantly lighter and more compact prototype that is suitable for transporting for Point of Care (POC) operation and that can be operated off a single standard power outlet. Additional advancements in the resonator, including use of a disposable sensing loop attached to the incisor tooth, have resulted in a biodosimetry method where measurements can be made quickly with a simple 5-step workflow and by people needing only a few minutes of training (which can be built into the instrument as a training video). In sum, recent advancements allow this prototype to meet or exceed the US Federal Government's recommended targets for POC biodosimetry in large-scale events.


Asunto(s)
Bioensayo/métodos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Exposición a la Radiación/análisis , Monitoreo de Radiación/métodos , Diente/química , Diente/efectos de la radiación , Triaje/métodos , Biomarcadores/análisis , Humanos , Dosis de Radiación , Liberación de Radiactividad Peligrosa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Evaluación de la Tecnología Biomédica
9.
Radiat Prot Dosimetry ; 172(1-3): 87-95, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27421470

RESUMEN

Managing radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation relies on the availability of biodosimetry to assess whether individuals need to be triaged for care. Electron Paramagnetic Resonance (EPR) tooth dosimetry is a viable method to accurately estimate the amount of ionizing radiation to which an individual has been exposed. In the intended measurement conditions and scenario, it is essential that the measurement process be fast, straightforward and provides meaningful and accurate dose estimations for individuals in the expected measurement conditions. The sensing component of a conventional L-band EPR spectrometer used for tooth dosimetry typically consists of a surface coil resonator that is rigidly, physically attached to the coupler. This design can result in cumbersome operation, limitations in teeth geometries that may be measured and hinder the overall utility of the dosimeter. A novel surface coil resonator has been developed for the currently existing L-band (1.15 GHz) EPR tooth dosimeter for the intended use as a point of care device by minimally trained operators. This resonator development provides further utility to the dosimeter, and increases the usability of the dosimeter by non-expert operators in the intended use scenario.


Asunto(s)
Bioensayo/instrumentación , Radiometría/instrumentación , Diente/química , Diente/efectos de la radiación , Transductores , Tecnología Inalámbrica/instrumentación , Módulo de Elasticidad , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Magnetismo/instrumentación , Miniaturización , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
Radiat Prot Dosimetry ; 172(1-3): 127-132, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27421472

RESUMEN

A new resonator for X-band electron paramagnetic resonance (EPR) spectroscopy, which utilizes the unique resonance properties of dielectric substrates, has been developed using a single crystal of titanium dioxide. As a result of the dielectric properties of the crystal(s) chosen, this novel resonator provides the ability to make in vivo EPR spectroscopy surface measurements in the presence of lossy tissues at X-band frequencies (up to 10 GHz). A double-loop coupling device is used to transmit and receive microwave power to/from the resonator. This coupler has been developed and optimized for coupling to the resonator in the presence of lossy tissues to further enable in vivo measurements, such as in vivo EPR spectroscopy of human fingernails or teeth to measure the dose of ionizing radiation that a given individual has been exposed to. An advantage of this resonator for surface measurements is that the magnetic fields generated by the resonator are inherently shallow, which is desirable for in vivo nail dosimetry.


Asunto(s)
Bioensayo/instrumentación , Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Radiometría/instrumentación , Diente/química , Diente/efectos de la radiación , Transductores , Impedancia Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Microondas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Propiedades de Superficie
11.
Radiat Prot Dosimetry ; 172(1-3): 121-126, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27412507

RESUMEN

A new resonator for X-band in vivo EPR nail dosimetry, the dielectric-backed aperture resonator (DAR), is developed based on rectangular TE102 geometry. This novel geometry for surface spectroscopy improves at least a factor of 20 compared to a traditional non-backed aperture resonator. Such an increase in EPR sensitivity is achieved by using a non-resonant dielectric slab, placed on the aperture inside the cavity. The dielectric slab provides an increased magnetic field at the aperture and sample, while minimizing sensitive aperture resonance conditions. This work also introduces a DAR semi-spherical (SS)-TE011 geometry. The SS-TE011 geometry is attractive due to having twice the incident magnetic field at the aperture for a fixed input power. It has been shown that DAR provides sufficient sensitivity to make biologically relevant measurements both in vitro and in vivo Although in vivo tests have shown some effects of physiological motions that suggest the necessity of a more robust finger holder, equivalent dosimetry sensitivity of approximately 1.4 Gy has been demonstrated.


Asunto(s)
Bioensayo/instrumentación , Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Uñas/química , Uñas/efectos de la radiación , Radiometría/instrumentación , Transductores , Impedancia Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Microondas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Health Phys ; 111(2): 169-82, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27356061

RESUMEN

The aim of this paper is to delineate characteristics of biodosimetry most suitable for assessing individuals who have potentially been exposed to significant radiation from a nuclear device explosion when the primary population targeted by the explosion and needing rapid assessment for triage is civilians vs. deployed military personnel. The authors first carry out a systematic analysis of the requirements for biodosimetry to meet the military's needs to assess deployed troops in a warfare situation, which include accomplishing the military mission. Then the military's special capabilities to respond and carry out biodosimetry for deployed troops in warfare are compared and contrasted systematically, in contrast to those available to respond and conduct biodosimetry for civilians who have been targeted by terrorists, for example. Then the effectiveness of different biodosimetry methods to address military vs. civilian needs and capabilities in these scenarios was compared and, using five representative types of biodosimetry with sufficient published data to be useful for the simulations, the number of individuals are estimated who could be assessed by military vs. civilian responders within the timeframe needed for triage decisions. Analyses based on these scenarios indicate that, in comparison to responses for a civilian population, a wartime military response for deployed troops has both more complex requirements for and greater capabilities to use different types of biodosimetry to evaluate radiation exposure in a very short timeframe after the exposure occurs. Greater complexity for the deployed military is based on factors such as a greater likelihood of partial or whole body exposure, conditions that include exposure to neutrons, and a greater likelihood of combined injury. These simulations showed, for both the military and civilian response, that a very fast rate of initiating the processing (24,000 d) is needed to have at least some methods capable of completing the assessment of 50,000 people within a 2- or 6-d timeframe following exposure. This in turn suggests a very high capacity (i.e., laboratories, devices, supplies and expertise) would be necessary to achieve these rates. These simulations also demonstrated the practical importance of the military's superior capacity to minimize time to transport samples to offsite facilities and use the results to carry out triage quickly. Assuming sufficient resources and the fastest daily rate to initiate processing victims, the military scenario revealed that two biodosimetry methods could achieve the necessary throughput to triage 50,000 victims in 2 d (i.e., the timeframe needed for injured victims), and all five achieved the targeted throughput within 6 d. In contrast, simulations based on the civilian scenario revealed that no method could process 50,000 people in 2 d and only two could succeed within 6 d.


Asunto(s)
Bioensayo/métodos , Personal Militar , Evaluación de Necesidades , Exposición a la Radiación/análisis , Traumatismos por Radiación/prevención & control , Monitoreo de Radiación/métodos , Defensa Civil/métodos , Incidentes con Víctimas en Masa , Medicina Militar/métodos , Guerra Nuclear , Traumatismos por Radiación/diagnóstico , Liberación de Radiactividad Peligrosa , Terrorismo , Triaje/métodos , Guerra
13.
Radiat Environ Biophys ; 53(2): 335-46, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24711003

RESUMEN

The management of radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation will rely critically on the availability and use of suitable biodosimetry methods. In vivo electron paramagnetic resonance (EPR) tooth dosimetry has a number of valuable and unique characteristics and capabilities that may help enable effective triage. We have produced a prototype of a deployable EPR tooth dosimeter and tested it in several in vitro and in vivo studies to characterize the performance and utility at the state of the art. This report focuses on recent advances in the technology, which strengthen the evidence that in vivo EPR tooth dosimetry can provide practical, accurate, and rapid measurements in the context of its intended use to help triage victims in the event of an improvised nuclear device. These advances provide evidence that the signal is stable, accurate to within 0.5 Gy, and can be successfully carried out in vivo. The stability over time of the radiation-induced EPR signal from whole teeth was measured to confirm its long-term stability and better characterize signal behavior in the hours following irradiation. Dosimetry measurements were taken for five pairs of natural human upper central incisors mounted within a simple anatomic mouth model that demonstrates the ability to achieve 0.5 Gy standard error of inverse dose prediction. An assessment of the use of intact upper incisors for dose estimation and screening was performed with volunteer subjects who have not been exposed to significant levels of ionizing radiation and patients who have undergone total body irradiation as part of bone marrow transplant procedures. Based on these and previous evaluations of the performance and use of the in vivo tooth dosimetry system, it is concluded that this system could be a very valuable resource to aid in the management of a massive radiological event.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Traumatismos por Radiación , Radiometría/métodos , Diente/efectos de la radiación , Triaje , Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Diseño de Equipo , Humanos , Incisivo/efectos de la radiación , Modelos Biológicos , Radiometría/instrumentación , Factores de Tiempo , Irradiación Corporal Total
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA