Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Waste Manag Res ; 25(1): 14-23, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17346003

RESUMEN

Potato production and processing are very important activities in the agricultural economy of the Pacific Northwest. Part of the reason for the development of this industry has been the availability of water for both growing and processing. A great amount of water is used in processing potato products, such as frozen French fries, and the waste water is a pollutant because it contains high levels of nitrate and other nutrients. Using this waste water to irrigate the fields can be a suitable disposal method. Field application will reduce potato fertilizer costs, but it can also cause underground water contamination if over-applied to the field. In this econometric study, we used field data associated with current waste water applications in central Washington to examine the yield response as well as the soil nitrogen content response to waste water applications. Our results from the production model show that both water and nitrogen positively affect crop yields at the current levels of application, but potassium has been over applied. This implies that replacing some waste water with fresh water and nitrogen fertilizer will increase production. The environmental model results show that applying more nitrogen to the soil leads to more movement below the root zone. The results also suggest that higher crop yields lead to less nitrogen in the soil, and applying more water increases crop yields, which can reduce the nitrogen left in the soil. Therefore, relative to the current practice, waste water application rates should be reduced and supplemented with fresh water to enhance nitrogen use by plants and reduce residual nitrogen in the soil.


Asunto(s)
Industria de Alimentos , Residuos Industriales , Solanum tuberosum , Administración de Residuos/métodos , Contaminación del Agua , Contaminación Ambiental , Modelos Teóricos , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo , Washingtón , Administración de Residuos/economía , Agua/química
2.
Plant Dis ; 91(10): 1327-1336, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30780516

RESUMEN

Defender (A90586-11) is a new late blight-resistant potato cultivar which was released from the Tri-State Potato Variety Development Program in 2004. Conventional and reduced fungicide spray programs were compared on Defender and Russet Burbank (3 years) and Ranger Russet (1 year) in Wisconsin experimental field trials. Useful levels of field resistance to both late blight and early blight were observed in Defender in the absence of fungicide sprays and reduced fungicide input programs. Disease progressed slowest on Defender regardless of fungicide program, relative to Russet Burbank and Ranger Russet. Organic, conventional, and reduced fungicide spray programs also were compared on Defender and Russet Burbank in experimental greenhouse and field tests in Washington. Fungicide spray programs performed similarly on both Defender and Russet Burbank; however, area under the disease progress curve values for no-fungicide treatments were either three times (greenhouse) or six times (field) lower on Defender compared with Russet Burbank. Regardless of the fungicide program, total yield was higher for Defender than Russet Burbank. Mean economic returns associated with Defender also were higher than for Russet Burbank ($6,196 versus $4,388/ha). Fungicide and nonfungicide treatment programs generated similar returns on Defender whereas conventional and reduced fungicide programs generated comparable but higher returns than the nonfungicide program on Russet Burbank.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA