Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38479811

RESUMEN

Keeping track of multiple visually identical and independently moving objects is a remarkable feature of the human visual system. Theoretical accounts for this ability focus on resource-based models that describe parametric decreases of performance with increasing demands during the task (i.e., more relevant items, closer distances, higher speed). Additionally, the presence of two central tracking resources, one within each hemisphere, has been proposed, allowing for an independent maintenance of moving targets within each visual hemifield. Behavioral evidence in favor of such a model shows that human subjects are able to track almost twice as many targets across both hemifields compared with within one hemifield. A number of recent publications argue for two separate and parallel tracking mechanisms during standard object tracking tasks that allow for the maintenance of the relevant information in a location-based and object-based manner. Unique electrophysiological correlates for each of those processes have been identified. The current study shows that these electrophysiological components are differentially present during tracking within either the left or right hemifield. The present results suggest that targets are mostly maintained as an object-based representation during left hemifield tracking, while location-based resources are preferentially engaged during right hemifield tracking. Interestingly, the manner of representation does not seem to have an impact on behavioral performance within the subjects, while the electrophysiological component indicating object-based tracking does correlate with performance between subjects. We propose that hemifield independence during multiple-object tracking may be an indication of the underlying hemispheric bias for parallel location-based and object-based tracking mechanisms.


Asunto(s)
Atención , Campos Visuales , Humanos , Atención/fisiología
2.
Elife ; 122023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099581

RESUMEN

The visual system has evolved the ability to track features like color and orientation in parallel. This property aligns with the specialization of processing these feature dimensions in the visual cortex. But what if we ask to track changing feature-values within the same feature dimension? Parallel tracking would then have to share the same cortical representation, which would set strong limitations on tracking performance. We address this question by measuring the precision of color representations when human observers track the color of two superimposed dot clouds that simultaneously change color along independent trajectories in color-space. We find that tracking precision is highly imbalanced between streams and that tracking precision changes over time by alternating between streams at a rate of ~1 Hz. These observations suggest that, while parallel color tracking is possible, it is highly limited, essentially allowing for only one color-stream to be tracked with precision at a given time.


Asunto(s)
Atención , Corteza Visual , Humanos , Asignación de Recursos , Estimulación Luminosa
3.
Front Neurosci ; 17: 1248975, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854290

RESUMEN

Background: Somatosensory deficits after stroke correlate with functional disabilities and impact everyday-life. In particular, the interaction of proprioception and motor dysfunctions affects the recovery. While corticospinal tract (CST) damage is linked to poor motor outcome, much less is known on proprioceptive recovery. Identifying a predictor for such a recovery could help to gain insights in the complex functional recovery processes thereby reshaping rehabilitation strategies. Methods: 50 patients with subacute stroke were tested before and after neurological rehabilitation. Proprioceptive and motor impairments were quantified with three clinical assessments and four hand movement and proprioception measures using a robotic device. Somatosensory evoked potentials (SSEP) to median nerve stimulation and structural imaging data (MRI) were also collected. Voxel-based lesion-symptom mapping (VLSM) along with a region of interest (ROI) analysis were performed for the corticospinal tract (CST) and for cortical areas. Results: Before rehabilitation, the VLSM revealed lesion correlates for all clinical and three robotic measures. The identified voxels were located in the white matter within or near the CST. These regions associated with proprioception were located posterior compared to those associated with motor performance. After rehabilitation the patients showed an improvement of all clinical and three robotic assessments. Improvement in the box and block test was associated with an area in anterior CST. Poor recovery of proprioception was correlated with a high lesion load in fibers towards primary sensorymotor cortex (S1 and M1 tract). Patients with loss of SSEP showed higher lesion loads in these tracts and somewhat poorer recovery of proprioception. The VSLM analysis for SSEP loss revealed a region within and dorsal of internal capsule next to the posterior part of CST, the posterior part of insula and the rolandic operculum. Conclusion: Lesions dorsal to internal capsule next to the posterior CST were associated with proprioceptive deficits and may have predictive value. Higher lesion load was correlated with poorer restoration of proprioceptive function. Furthermore, patients with SSEP loss trended towards poor recovery of proprioception, the corresponding lesions were also located in the same location. These findings suggest that structural imaging of the internal capsule and CST could serve as a recovery predictor of proprioceptive function.

5.
Eur J Neurosci ; 55(5): 1200-1214, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35075713

RESUMEN

Converging evidence shows that our visual system can track multiple visual, independently moving items over time. This is accomplished location-based by maintaining the individual spatial information of each target item or object-based by constructing an abstract object-based representation out of the tracked items. Previous work showed specific behavioural, electrophysiological and haemodynamic markers for location-based or object-based representations of the relevant targets by probing the encoded information subsequently after tracking. However, domain-specific differences of representational correlates during visual tracking itself have not been reported yet. The current study aims to identify spectral properties of the electrophysiological signal during tracking that might indicate location-based versus object-based maintenance of visual information. Subjects had to covertly track four out of eight visually identical items for several seconds while electrophysiological signals were recorded. Subsequently, a probe consisting of four items appeared and the subjects had to indicate with a button press whether the probe matched all targets or not. Subjects employing an object-based strategy showed an enhanced gamma response during the presentation of the target items at the beginning of the trial. On the other hand, subjects using a location-based strategy showed enhanced gamma synchronization throughout the tracking itself. Both the object- and location-based gamma responses yielded identical spatial topographical field distributions. These results indicate that object-based tracking is supported by enhanced encoding during the initial presentation of the targets to be tracked. Location-based tracking is characterized by the sustained maintenance of the individual targets during the entire tracking period in that same processing network.


Asunto(s)
Percepción de Movimiento , Atención/fisiología , Humanos , Percepción de Movimiento/fisiología , Desempeño Psicomotor
6.
Brain Connect ; 12(8): 725-739, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35088596

RESUMEN

Objective: Hemianopia after occipital stroke is believed to be mainly due to local damage at or near the lesion site. However, magnetic resonance imaging studies suggest functional connectivity network (FCN) reorganization also in distant brain regions. Because it is unclear whether reorganization is adaptive or maladaptive, compensating for, or aggravating vision loss, we characterized FCNs electrophysiologically to explore local and global brain plasticity and correlated FCN reorganization with visual performance. Methods: Resting-state electroencephalography (EEG) was recorded in chronic, unilateral stroke patients and healthy age-matched controls (n = 24 each). This study was approved by the local ethics committee. The correlation of oscillating EEG activity was calculated with the imaginary part of coherence between pairs of regions of interest, and FCN graph theory metrics (degree, strength, clustering coefficient) were correlated with stimulus detection and reaction time. Results: Stroke brains showed altered FCNs in the alpha- and low beta-band in numerous occipital, temporal brain structures. On a global level, FCN had a less efficient network organization whereas on the local level node networks were reorganized especially in the intact hemisphere. Here, the occipital network was 58% more rigid (with a more "regular" network structure) whereas the temporal network was 32% more efficient (showing greater "small-worldness"), both of which correlated with worse or better visual processing, respectively. Conclusions: Occipital stroke is associated with both local and global FCN reorganization, but this can be both adaptive and maladaptive. We propose that the more "regular" FCN structure in the intact visual cortex indicates maladaptive plasticity, where less processing efficacy with reduced signal/noise ratio may cause the perceptual deficits in the intact visual field (VF). In contrast, reorganization in intact temporal brain regions is presumably adaptive, possibly supporting enhanced peripheral movement perception.


Asunto(s)
Encéfalo , Accidente Cerebrovascular , Humanos , Hemianopsia/complicaciones , Electroencefalografía/métodos , Accidente Cerebrovascular/complicaciones , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos
7.
Eur J Neurol ; 28(9): 3051-3060, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34081813

RESUMEN

BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that causes progressive degeneration of neurons in motor and non-motor brain regions, affecting multiple cognitive domains such as memory. A functional magnetic resonance imaging (fMRI) study was performed to explore working memory function in ALS. METHODS: To contribute to the growing research field that employs structural and functional neuroimaging to investigate the effect of ALS on different working memory components, the localization and intensity of alterations in neural activity was explored using fMRI. Being the first study to specifically address verbal working memory via fMRI in the context of ALS, the verbal n-back task with 0-back and 2-back conditions was employed. RESULTS: Despite ALS patients showing unimpaired accuracies (p = 0.724) and reaction times (p = 0.0785), there was significantly increased brain activity of frontotemporal and parietal regions in the 2-back minus 0-back contrast in patients compared to controls (using nonparametric statistics with 5000 permutations and a T threshold of 2.5). DISCUSSION: Increased brain activity of the frontotemporal and parietal regions during working memory performance was largely associated with better neuropsychological function within the ALS group, suggesting a compensatory effect during working memory execution. This study therefore adds to the current knowledge on neural correlates of working memory in ALS and contributes to a more nuanced understanding of hyperactivity during cognitive processes in fMRI studies of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Memoria a Corto Plazo , Pruebas Neuropsicológicas
8.
J Neurosci Methods ; 360: 109230, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34052290

RESUMEN

BACKGROUND: There is an active debate about the mechanism underlying the generation of event-related potentials, and, particularly, whether these are generated by additive components, independent of the background EEG, or the phase-resetting of ongoing oscillations. METHOD: We present a new metric to evaluate trial-by-trial covariations of successive ERP components. Our main assumption is that if two successive ERP components are generated by phase-resetting of a unitary oscillation, they should be time-locked to each other and their single-trial latencies should covary. In contrast, if the components are generated by independent additive components, single-trial latency covariations should not be observed. To quantify the covariance between the single-trial latencies, we define a metric based on latency-corrected averages, which we applied to both simulated and real ERPs. RESULTS: For the simulated data, there was a clear distinction in latency covariation between the ERPs generated with unitary phase-resetting versus additive models. For real visual and auditory ERPs, we observed a lack of latency covariation of successive components. COMPARISON WITH EXISTING METHODS: The new metric is complementary to other approaches to study the mechanisms underlying ERP generation, and does not suffer from potential caveats due to filtering artifacts. Moreover, the method proved to be more sensitive than another estimation of single-trial latency covariations using the cross-correlation function. CONCLUSION: The observed lack of latency covariation shows the presence of parallel, independent processing within each cortical sensory pathway.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Artefactos , Humanos , Tiempo de Reacción
9.
Front Psychiatry ; 12: 613156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841199

RESUMEN

Cognitive reappraisal is an emotion regulation strategy to reduce the impact of affective stimuli. This regulation could be incomplete in patients with functional neurologic disorder (FND) resulting in an overflowing emotional stimulation perpetuating symptoms in FND patients. Here we employed functional MRI to study cognitive reappraisal in FND. A total of 24 FND patients and 24 healthy controls employed cognitive reappraisal while seeing emotional visual stimuli in the scanner. The Symptom Checklist-90-R (SCL-90-R) was used to evaluate concomitant psychopathologies of the patients. During cognitive reappraisal of negative IAPS images FND patients show an increased activation of the right amygdala compared to normal controls. We found no evidence of downregulation in the amygdala during reappraisal neither in the patients nor in the control group. The valence and arousal ratings of the IAPS images were similar across groups. However, a subgroup of patients showed a significant higher account of extreme low ratings for arousal for negative images. These low ratings correlated inversely with the item "anxiety" of the SCL-90-R. The increased activation of the amygdala during cognitive reappraisal suggests altered processing of emotional stimuli in this region in FND patients.

10.
Neuroimage Clin ; 29: 102545, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33387861

RESUMEN

Memory impairment in motor neuron disease (MND) is still an underrecognized feature and has traditionally been attributed to executive dysfunction. Here, we investigate the rate of memory impairment in a longitudinal cohort of MND patients, its relationship to other cognitive functions and the underlying neuroanatomical correlates. 142 patients with MND and 99 healthy controls (HC) underwent comprehensive neuropsychological testing and structural MRI at 3T up to four times over a period of 18 months. Linear-mixed effects models were fitted to identify changes at baseline and over time in episodic memory function (learning, immediate and delayed recall, recognition), composed cognitive scores (memory, verbal fluency, executive function), and memory-related structural brain regions (hippocampus, entorhinal cortex, parahippocampal gyrus). Associations between episodic memory performance and volumetric or cortical thickness changes of these regions were computed using Pearson's r. Learning, immediate and delayed recall, as well as recognition performance were significantly reduced in MND when compared to controls at baseline. Performances in these subtests improved over time although MND showed less improvement than controls. This relationship did not change when only "classical" ALS patients were considered. Patients with MND showed thinning of the right parahippocampal gyrus (PhG) in comparison to controls that was progressing over time. Bilateral hippocampal atrophy was observed in MND patients with memory impairment after splitting the group according to their overall episodic memory performance, with the right hippocampus shrinking over time. In MND patients, the bilateral hippocampal atrophy was associated with impairment in learning, recall, and recognition at baseline. In contrast, left PhG thinning was associated with a poorer learning performance. These results show that episodic memory impairment in MND is a frequent cognitive dysfunction. Since deficits are not clearly declining with disease course, an early involvement of this cognitive domain in the disease seems probable. The memory performance-dependent atrophy of the hippocampus and PhG provide evidence for a widespread involvement of these non-motor cortical areas in disease pathology.


Asunto(s)
Memoria Episódica , Enfermedad de la Neurona Motora , Atrofia/patología , Función Ejecutiva , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Enfermedad de la Neurona Motora/complicaciones , Enfermedad de la Neurona Motora/diagnóstico por imagen , Enfermedad de la Neurona Motora/patología , Pruebas Neuropsicológicas
11.
Restor Neurol Neurosci ; 38(6): 443-453, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33325416

RESUMEN

BACKGROUND: A number of theoretical accounts have been put forward to explain the ability to simultaneously track multiple visually indistinguishable objects over a period of time. Serial processing models of visual tracking focus on the maintenance of the spatial locations of every single item over time. A more recent mechanism describes multiple object tracking as the ability to maintain a higher order representation of an abstract spatial configuration built by the illusory connection of the tracked items through their transition. OBJECTIVE: The current study investigates the correspondence between these serial and parallel tracking accounts and the right hemispheric specialization for the space-based vs. left hemispheric for object-based attentional processing. METHODS: Electrophysiological brain responses were recorded in two groups of patients with right- and left hemispheric lesions while performing in a multiple object tracking task. RESULTS: The results suggest a failure to distinguish single item information for the right hemispheric patients accompanied by the absence of a known electrophysiological marker associated with single item tracking. Importantly, left hemispheric patients showed a graded behavioral and electrophysiological response to probe stimuli as a function of the congruence of the probe with the relevant target stimuli. CONCLUSIONS: The current data suggest that the differential contribution of serial and parallel tracking mechanisms during object tracking can partly be explained by the different functional contributions of the right and left brain hemispheres.


Asunto(s)
Atención/fisiología , Lateralidad Funcional/fisiología , Percepción de Movimiento/fisiología , Tiempo de Reacción/fisiología , Accidente Cerebrovascular/diagnóstico por imagen , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa/métodos , Accidente Cerebrovascular/fisiopatología , Rehabilitación de Accidente Cerebrovascular/métodos
12.
Hum Brain Mapp ; 41(7): 1765-1774, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31872941

RESUMEN

The topographical structure of the visual system in individual subjects can be visualized using fMRI. Recently, a radial bias for the long axis of population receptive fields (pRF) has been shown using fMRI. It has been theorized that the elongation of receptive fields pointing toward the fovea results from horizontal local connections bundling orientation selective units mostly parallel to their polar position within the visual field. In order to investigate whether there is a causal relationship between orientation selectivity and pRF elongation the current study employed a global orientation adapter to modulate the orientation bias for the visual system while measuring spatial pRF characteristics. The hypothesis was that the orientation tuning change of neural populations would alter pRF elongations toward the fovea particularly at axial positions parallel and orthogonal to the affected orientation. The results indeed show a different amount of elongation of pRF units and their orientation at parallel and orthogonal axial positions relative to the adapter orientation. Within the lower left hemifield, pRF radial bias and elongation showed an increase during adaptation to a 135° grating while both parameters decreased during the presentation of a 45° adapter stimulus. The lower right visual field showed the reverse pattern. No modulation of the pRF topographies were observed in the upper visual field probably due to a vertical visual field asymmetry of sensitivity toward the low contrast spatial frequency pattern of the adapter stimulus. These data suggest a direct relationship between orientation selectivity and elongation of population units within the visual cortex.


Asunto(s)
Adaptación Psicológica/fisiología , Orientación/fisiología , Visión Ocular/fisiología , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiología , Campos Visuales/fisiología , Adulto , Mapeo Encefálico , Femenino , Lateralidad Funcional/fisiología , Sustancia Gris , Humanos , Imagen por Resonancia Magnética , Masculino , Reconocimiento Visual de Modelos
13.
Neuroimage ; 202: 116061, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31374329

RESUMEN

Humans develop posture and balance control during childhood. Interestingly, adults can also learn to master new complex balance tasks, but the underlying neural mechanisms are not fully understood yet. Here, we combined broad scale brain connectivity fMRI at rest and spinal excitability measurements during movement. Six weeks of slackline training improved the capability to walk on a slackline which was paralleled by functional connectivity changes in brain regions associated with posture and balance control and by task-specific changes of spinal excitability. Importantly, the performance of trainees was not better than control participants in a different, untrained balance task. In conclusion, slackline training induced large-scale neuroplasticity which solely transferred into highly task specific performance improvements.


Asunto(s)
Encéfalo/fisiología , Conectoma , Reflejo H/fisiología , Aprendizaje/fisiología , Actividad Motora/fisiología , Músculo Esquelético/fisiología , Plasticidad Neuronal/fisiología , Equilibrio Postural/fisiología , Desempeño Psicomotor/fisiología , Médula Espinal/fisiología , Transferencia de Experiencia en Psicología/fisiología , Adulto , Encéfalo/diagnóstico por imagen , Electromiografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
14.
Mult Scler ; 25(2): 256-266, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29160739

RESUMEN

BACKGROUND: Among patients with multiple sclerosis (MS), fatigue is the most commonly reported symptom. It can be subdivided into an effort-dependent (fatigability) and an effort-independent component (trait-fatigue). OBJECTIVE: The objective was to disentangle activity changes associated with effort-independent "trait-fatigue" from those associated with effort-dependent fatigability in MS patients. METHODS: This study employed behavioral measures and functional magnetic imaging to investigate neural changes in MS patients associated with fatigue. A total of 40 MS patients and 22 age-matched healthy controls performed in a fatigue-inducing N-back task. Effort-independent fatigue was assessed using the Fatigue Scale of Motor and Cognition (FSMC) questionnaire. RESULTS: Effort-independent fatigue was observed to be reflected by activity increases in fronto-striatal-subcortical networks primarily involved in the maintenance of homeostatic processes and in motor and cognitive control. Effort-dependent fatigue (fatigability) leads to activity decreases in attention-related cortical and subcortical networks. CONCLUSION: These results indicate that effort-independent (fatigue) and effort-dependent fatigue (fatigability) in MS patients have functionally related but fundamentally different neural correlates. Fatigue in MS as a general phenomenon is reflected by complex interactions of activity increases in control networks (effort-independent component) and activity reductions in executive networks (effort-dependent component) of brain areas.


Asunto(s)
Encéfalo/fisiopatología , Fatiga/etiología , Fatiga/fisiopatología , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/fisiopatología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
15.
Front Neurol ; 9: 565, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30079050

RESUMEN

There is increasing evidence for hippocampal involvement in Amyotrophic Lateral Sclerosis (ALS). Recent neuroimaging studies have been focused on disease-related hippocampal volume alterations while changes in hippocampal shape have been investigated less frequently. Here, we aimed to characterize the patterns of hippocampal degeneration using both an automatic and manual volumetric and surface-based approach in a group of 31 patients with ALS and 29 healthy controls. Irrespective of the segmentation type, left, and right hippocampal volumes were significantly reduced in ALS compared to controls. Local shape alterations were identified in the hippocampal head region of patients with ALS that corresponds to the cornu ammonis field 1 (CA1), a region known to be involved in novelty detection, memory processing, and integration of hippocampal input and output information. The results suggest a global hippocampal volume loss in ALS that is complemented by local shape deformations in a highly interconnected region within the hippocampus.

16.
Hum Brain Mapp ; 39(6): 2472-2481, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29464880

RESUMEN

Estimates of visual field topographies in human visual cortex obtained through fMRI traveling wave techniques usually provide the parameters of population receptive field (pRF) location (polar angle, eccentricity) and receptive field size. These parameters are obtained by fitting the recorded data to a standard model population receptive field. In this work, pRF profiles are measured directly by back-projecting preprocessed fMRI time-series to sweeps of a bar across the visual field in different angles. The current data suggest that the model-free pRF profiles contain information not only about receptive field location and size but also about the pRF shape characteristics. The elongation (ellipticity) of pRFs decreases along the early visual hierarchy to a different degree for the ventral and the dorsal stream. Furthermore, ellipticity changes as a function of eccentricity. pRF orientation shows a high degree of collinearity with its angular position within the visual field. Using model-free pRF measurements, the traveling wave technique provides additional characteristics of pRF topographies that are not restricted to size and provide robust measures within the single subject.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Orientación/fisiología , Corteza Visual/diagnóstico por imagen , Campos Visuales/fisiología , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Percepción de Movimiento , Estimulación Luminosa , Vías Visuales/diagnóstico por imagen
17.
Sci Rep ; 7(1): 8680, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28819123

RESUMEN

The present study investigated the neural correlates associated with gait improvements triggered by an active prosthesis in patients with drop-foot following stroke during the chronic stage. Eleven patients took part in the study. MEG recordings in conjunction with somatosensory stimulation of the left and right hand as well as gait analyses were performed shortly before or after prosthesis implantation surgery and 3-4 months later. Plastic changes of the sensorimotor cortex of the ipsi- and contralesional hemisphere were revealed. Gait analysis indicated that all patients improved their gait with the active prosthesis. Patients with larger plastic changes within the lesioned hemisphere maintained their improved gait performance even when the prosthesis was turned off. Patients with larger contralesional changes also improved their gait with the active prosthesis. However, their gait measures decreased when the prosthesis was turned off. The current data provide the neural basis of gait improvement triggered by an active prosthesis and has important implications with respect to the choice of the type of active prosthesis (implantable vs removable) and to the selection procedure of the patients (length of testing period).


Asunto(s)
Corteza Cerebral/fisiopatología , Implantación de Prótesis , Rehabilitación de Accidente Cerebrovascular/psicología , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Femenino , Marcha , Análisis de la Marcha , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Implantación de Prótesis/métodos , Recuperación de la Función , Rehabilitación de Accidente Cerebrovascular/métodos
18.
Front Neurol ; 8: 142, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28443062

RESUMEN

Chronic pain is suggested to be linked to reorganization processes in the sensorimotor cortex. In the current study, the somatosensory representation of the extremities was investigated in a patient with a complex regional pain syndrome (CRPS) that initially occurred in the right hand and arm and spread later into the left hand and right leg. After the spread, magnetoencephalographic recordings in conjunction with somatosensory stimulation revealed that the clinical symptoms were associated with major changes in the primary somatosensory representation. Tactile stimulation of body parts triggering CRPS-related pain elicited activity located in the left primary somatosensory region corresponding to the right hand representation, where the CRPS initially appeared. Solely the unaffected left foot was observed to have a regular S1 representation. The pain distribution pattern was matching the cortical somatosensory misrepresentation suggesting that cortical reorganization processes might contribute and possibly underlie the development and spread of the CRPS.

19.
Sci Rep ; 7: 40252, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067298

RESUMEN

Recent studies suggest that amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) lie on a single clinical continuum. However, previous neuroimaging studies have found only limited involvement of temporal lobe regions in ALS. To better delineate possible temporal lobe involvement in ALS, the present study aimed to examine changes in functional connectivity across the whole brain, particularly with regard to extra-motor regions, in a group of 64 non-demented ALS patients and 38 healthy controls. To assess between-group differences in connectivity, we computed edge-level statistics across subject-specific graphs derived from resting-state functional MRI data. In addition to expected ALS-related decreases in functional connectivity in motor-related areas, we observed extensive changes in connectivity across the temporo-occipital cortex. Although ALS patients with comorbid FTD were deliberately excluded from this study, the pattern of connectivity alterations closely resembles patterns of cerebral degeneration typically seen in FTD. This evidence for subclinical temporal dysfunction supports the idea of a common pathology in ALS and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Lóbulo Occipital/fisiopatología , Lóbulo Temporal/fisiopatología , Encéfalo , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas
20.
Neuroimage ; 146: 484-491, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27810524

RESUMEN

Subjects can visually track several moving items simultaneously, a fact that is difficult to explain by classical attention models. Previous work revealed that building a global shape based on the spatial position of the tracked items improves performance. Here we investigated the involved neural processes and the role of attention. A task-irrelevant probe stimulus was presented during multiple objects tracking at a fixed spatial location. Depending on the tracked item's trajectories the probe appeared either outside, inside, or on the edge of aforementioned global shape. Event-related potentials to the probe stimulus revealed two subsequent stages of attentional selection during multiple object tracking. After 100ms attention was deployed on the edge/boundary of the figure formed by the tracked items. In the following 80ms, attention spread from the outline to the full figure. These findings clarify the eminent contribution of attentional mechanisms in multiple objects tracking.


Asunto(s)
Atención/fisiología , Percepción de Movimiento/fisiología , Percepción Espacial/fisiología , Adulto , Potenciales Evocados , Medidas del Movimiento Ocular , Femenino , Humanos , Magnetoencefalografía , Masculino , Estimulación Luminosa , Tiempo de Reacción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA