Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 27(1): 015001, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25407046

RESUMEN

Electron transport through a single C60 molecule on Cu(1 1 1) has been investigated with a scanning tunnelling microscope in tunnelling and contact ranges. Single-C60 junctions have been fabricated by establishing a contact between the molecule and the tip, which is reflected by a down-shift in the lowest unoccupied molecular orbital resonance. These junctions are stable even at elevated bias voltages enabling conductance measurements at high voltages and nonlinear conductance spectroscopy in tunnelling and contact ranges. Spectroscopy and first principles transport calculations clarify the relation between molecular orbital resonances and the junction conductance. Due to the strong molecule-electrode coupling the simple picture of electron transport through individual orbitals does not hold.

2.
Phys Rev Lett ; 109(18): 186601, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23215305

RESUMEN

The emission of plasmonic light from a single C(60) molecule on Cu(111) is probed in a scanning tunneling microscope from the weak-coupling, tunneling range to strong coupling of the molecule to the electrodes at contact. At positive sample voltage the photon yield decreases owing to shot-noise suppression in an increasingly transparent quantum contact. At reversed bias an unexpected nonlinear increase occurs. First-principles transport calculations reveal that ultrafast charge fluctuations on the molecule give rise to additional noise at optical frequencies beyond the shot noise of the current that is injected to the tip.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA