RESUMEN
In 2016 the World Health Organization identified 21 countries that could eliminate malaria by 2020. Monitoring progress towards this goal requires tracking ongoing transmission. Here we develop methods that estimate individual reproduction numbers and their variation through time and space. Individual reproduction numbers, Rc, describe the state of transmission at a point in time and differ from mean reproduction numbers, which are averages of the number of people infected by a typical case. We assess elimination progress in El Salvador using data for confirmed cases of malaria from 2010 to 2016. Our results demonstrate that whilst the average number of secondary malaria cases was below one (0.61, 95% CI 0.55-0.65), individual reproduction numbers often exceeded one. We estimate a decline in Rc between 2010 and 2016. However we also show that if importation is maintained at the same rate, the country may not achieve malaria elimination by 2020.
Asunto(s)
Malaria/transmisión , Número Básico de Reproducción , El Salvador/epidemiología , Enfermedades Endémicas/prevención & control , Monitoreo Epidemiológico , Humanos , Incidencia , Funciones de Verosimilitud , Malaria/epidemiología , Malaria/prevención & control , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Malaria Vivax/epidemiología , Malaria Vivax/prevención & control , Malaria Vivax/transmisión , Factores de Riesgo , Factores de TiempoRESUMEN
A decade after the Global Malaria Eradication Program, El Salvador had the highest burden of malaria in Mesoamerica, with approximately 20% due to Plasmodium falciparum. A resurgence of malaria in the 1970s led El Salvador to alter its national malaria control strategy. By 1995, El Salvador recorded its last autochthonous P. falciparum case with fewer than 20 Plasmodium vivax cases annually since 2011. By contrast, its immediate neighbors continue to have the highest incidences of malaria in the region. We reviewed and evaluated the policies and interventions implemented by the Salvadoran National Malaria Program that likely contributed to this progress toward malaria elimination. Decentralization of the malaria program, early regional stratification by risk, and data-driven stratum-specific actions resulted in the timely and targeted allocation of resources for vector control, surveillance, case detection, and treatment. Weekly reporting by health workers and volunteer collaborators-distributed throughout the country by strata and informed via the national surveillance system-enabled local malaria teams to provide rapid, adaptive, and focalized program actions. Sustained investments in surveillance and response have led to a dramatic reduction in local transmission, with most current malaria cases in El Salvador due to importation from neighboring countries. Additional support for systematic elimination efforts in neighboring countries would benefit the region and may be needed for El Salvador to achieve and maintain malaria elimination. El Salvador's experience provides a relevant case study that can guide the application of similar strategies in other countries committed to malaria elimination.