Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 945: 174006, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38889822

RESUMEN

Seaweeds are important components of coastal benthic ecosystems along the Western Antarctic Peninsula (WAP), providing refuge, food, and habitat for numerous associated species. Despite their crucial role, the WAP is among the regions most affected by global climate change, potentially impacting the ecology and physiology of seaweeds. Elevated atmospheric CO2 concentrations have led to increased dissolved inorganic carbon (Ci) with consequent declines in oceanic pH and alterations in seawater carbonate chemistry, known as Ocean Acidification (OA). Seaweeds possess diverse strategies for Ci uptake, including CO2 concentrating mechanisms (CCMs), which may distinctly respond to changes in Ci concentrations. Conversely, some seaweeds do not operate CCMs (non-CCM species) and rely solely on CO2. Nevertheless, our understanding of the status and functionality of Ci uptake strategies in Antarctic seaweeds remains limited. Here, we investigated the Ci uptake strategies of seaweeds along a depth gradient in the WAP. Carbon isotope signatures (δ13C) and pH drift assays were used as indicators of the presence or absence of CCMs. Our results reveal variability in CCM occurrence among algal phyla and depths ranging from 0 to 20 m. However, this response was species specific. Among red seaweeds, the majority relied solely on CO2 as an exogenous Ci source, with a high percentage of non-CCM species. Green seaweeds exhibited depth-dependent variations in CCM status, with the proportion of non-CCM species increasing at greater depths. Conversely, brown seaweeds exhibited a higher prevalence of CCM species, even in deep waters, indicating the use of CO2 and HCO3-. Our results are similar to those observed in temperate and tropical regions, indicating that the potential impacts of OA on Antarctic seaweeds will be species specific. Additionally, OA may potentially increase the abundance of non-CCM species relative to those with CCMs.


Asunto(s)
Carbono , Cambio Climático , Agua de Mar , Algas Marinas , Algas Marinas/metabolismo , Regiones Antárticas , Agua de Mar/química , Concentración de Iones de Hidrógeno , Dióxido de Carbono/análisis , Especificidad de la Especie , Ecosistema , Océanos y Mares , Acidificación de los Océanos
2.
Biodivers Data J ; 11: e111982, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38312333

RESUMEN

Background: The present dataset is a compilation of georeferenced occurrences of the littorinid genus Laevilacunaria Powell, 1951 (Mollusca, Gastropoda) in the Southern Ocean. Occurrence data were obtained from field expeditions (Antarctic and sub-Antarctic sampling) between 2015 and 2022, together with a review of published literature including records from 1887 to 2022. Three Laevilacunaria species have been recorded from the Southern Ocean: Laevilacunariabennetti, L.antarctica and L.pumilio. New information: The present dataset includes 75 occurrences, representing the most exhaustive database of this Antarctic and sub-Antarctic littorinid genus. The publication of this data paper was funded by the Belgian Science Policy Office (BELSPO, contract n°FR/36/AN1/AntaBIS) in the Framework of EU-Lifewatch as a contribution to the SCAR Antarctic biodiversity portal (biodiversity.aq).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA