Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Integr Environ Assess Manag ; 11(3): 355-69, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25556986

RESUMEN

The North Atlantic Landscape Conservation Cooperative LCC (NA LCC) is a public-private partnership that provides information to support conservation decisions that may be affected by global climate change (GCC) and other threats. The NA LCC region extends from southeast Virginia to the Canadian Maritime Provinces. Within this region, the US National Climate Assessment documented increases in air temperature, total precipitation, frequency of heavy precipitation events, and rising sea level, and predicted more drastic changes. Here, we synthesize literature on the effects of GCC interacting with selected contaminant, nutrient, and environmental processes to adversely affect natural resources within this region. Using a case study approach, we focused on 3 stressors with sufficient NA LCC region-specific information for an informed discussion. We describe GCC interactions with a contaminant (Hg) and 2 complex environmental phenomena-freshwater acidification and eutrophication. We also prepared taxa case studies on GCC- and GCC-contaminant/nutrient/process effects on amphibians and freshwater mussels. Several avian species of high conservation concern have blood Hg concentrations that have been associated with reduced nesting success. Freshwater acidification has adversely affected terrestrial and aquatic ecosystems in the Adirondacks and other areas of the region that are slowly recovering due to decreased emissions of N and sulfur oxides. Eutrophication in many estuaries within the region is projected to increase from greater storm runoff and less denitrification in riparian wetlands. Estuarine hypoxia may be exacerbated by increased stratification. Elevated water temperature favors algal species that produce harmful algal blooms (HABs). In several of the region's estuaries, HABs have been associated with bird die-offs. In the NA LCC region, amphibian populations appear to be declining. Some species may be adversely affected by GCC through higher temperatures and more frequent droughts. GCC may affect freshwater mussel populations via altered stream temperatures and increased sediment loading during heavy storms. Freshwater mussels are sensitive to un-ionized ammonia that more toxic at higher temperatures. We recommend studying the interactive effects of GCC on generation and bioavailability of methylmercury and how GCC-driven shifts in bird species distributions will affect avian exposure to methylmercury. Research is needed on how decreases in acid deposition concurrent with GCC will alter the structure and function of sensitive watersheds and surface waters. Studies are needed to determine how GCC will affect HABs and avian disease, and how more severe and extensive hypoxia will affect fish and shellfish populations. Regarding amphibians, we suggest research on 1) thermal tolerance and moisture requirements of species of concern, 2) effects of multiple stressors (temperature, desiccation, contaminants, nutrients), and 3) approaches to mitigate impacts of increased temperature and seasonal drought. We recommend studies to assess which mussel species and populations are vulnerable and which are resilient to rising stream temperatures, hydrological shifts, and ionic pollutants, all of which are influenced by GCC.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Contaminación del Agua/estadística & datos numéricos , Animales , Organismos Acuáticos/clasificación , Organismos Acuáticos/crecimiento & desarrollo , Océano Atlántico , Biodiversidad , Ecosistema , Monitoreo del Ambiente , Eutrofización , Agua Dulce/química , Mercurio/análisis
2.
Ecotoxicology ; 23(8): 1419-29, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25048962

RESUMEN

Historical discharges of Hg into the South River near the town of Waynesboro, VA, USA, have resulted in persistently elevated Hg concentrations in sediment, surface water, ground water, soil, and wildlife downstream of the discharge site. In the present study, we examined mercury (Hg) levels in in little brown bats (Myotis lucifugus) from this location and assessed the utility of a non-destructively collected tissue sample (wing punch) for determining mitochondrial DNA (mtDNA) damage in Hg exposed bats. Bats captured 1 and 3 km from the South River, exhibited significantly higher levels of total Hg (THg) in blood and fur than those from the reference location. We compared levels of mtDNA damage using real-time quantitative PCR (qPCR) analysis of two distinct regions of mtDNA. Genotoxicity is among the many known toxic effects of Hg, resulting from direct interactions with DNA or from oxidative damage. Because it lacks many of the protective protein structures and repair mechanisms associated with nuclear DNA, mtDNA is more sensitive to the effects of genotoxic chemicals and therefore may be a useful biomarker in chronically exposed organisms. Significantly higher levels of damage were observed in both regions of mtDNA in bats captured 3 km from the river than in controls. However, levels of mtDNA damage exhibited weak correlations with fur and blood THg levels, suggesting that other factors may play a role in the site-specific differences.


Asunto(s)
Quirópteros , Daño del ADN , ADN Mitocondrial/análisis , Mercurio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Monitoreo del Ambiente , Femenino , Cabello/química , Mercurio/sangre , Ríos/química , Virginia , Contaminantes Químicos del Agua/sangre
3.
Ecotoxicology ; 23(1): 45-55, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24271419

RESUMEN

This study examines mercury exposure in bats across the northeast U.S. from 2005 to 2009. We collected 1,481 fur and 681 blood samples from 8 states and analyzed them for total Hg. A subset (n = 20) are also analyzed for methylmercury (MeHg). Ten species of bats from the northeast U.S. are represented in this study of which two are protected by the Endangered Species Act (ESA 1973) and two other species are pending review. There are four objectives in this paper: (1) to examine correlates to differences in fur-Hg levels among all of the sampling sites, including age, sex, species, and presence of a Hg point source; (2) define the relationship between blood and fur-Hg levels and the factors that influence that relationship including age, sex, species, reproductive status, and energetic condition; (3) determine the relationships between total Hg and MeHg in five common eastern bat species; and (4) assess the distribution of Hg across bat populations in the northeast. We found total blood and fur mercury was eight times higher in bats captured near point sources compared to nonpoint sources. Blood-Hg and fur-Hg were well correlated with females on average accumulating two times more Hg in fur than males. On average fur MeHg accounted for 86 % (range 71-95 %) of the total Hg in bat fur. Considering that females had high Hg concentrations, beyond that of established levels of concern, suggests there could be negative implications for bat populations from high Hg exposure since Hg is readily transferred to pups via breast milk. Bats provide an integral part of the ecosystem and their protection is considered to be of high priority. More research is needed to determine if Hg is a stressor that is negatively impacting bat populations.


Asunto(s)
Quirópteros/fisiología , Contaminantes Ambientales/metabolismo , Mercurio/metabolismo , Factores de Edad , Animales , Ingestión de Energía , Contaminantes Ambientales/sangre , Femenino , Cabello/química , Masculino , Mercurio/sangre , Mid-Atlantic Region , New England , Reproducción , Factores Sexuales , Especificidad de la Especie
4.
Ecotoxicology ; 21(4): 1094-101, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22331394

RESUMEN

Despite evidence of persistent methylmercury (MeHg) contamination in the South River (Virginia, USA) ecosystem, there is little information concerning MeHg-associated neurological impacts in resident wildlife. Here we determined mercury (Hg) concentrations in tissues of insectivorous little brown bats (Myotis lucifugus) collected from a reference site and a MeHg-contaminated site in the South River ecosystem. We also explored whether neurochemical biomarkers (monoamine oxidase, MAO; acetylcholinesterase, ChE; muscarinic acetylcholine receptor, mAChR; N-methyl-D-aspartate receptor, NMDAR) previously shown to be altered by MeHg in other wildlife were associated with brain Hg levels in these bats. Concentrations of Hg (total and MeHg) in tissues were significantly higher (10-40 fold difference) in South River bats when compared to reference sites. Mean tissue mercury levels (71.9 ppm dw in liver, 7.14 ppm dw in brain, 132 ppm fw in fur) in the South River bats exceed (sub)-clinical thresholds in mammals. When compared to the South River bats, animals from the reference site showed a greater ability to demethylate MeHg in brain (33.1% of total Hg was MeHg vs. 65.5%) and liver (8.9% of total Hg was MeHg vs. 50.8%) thus suggesting differences in their ability to detoxify and eliminate Hg. In terms of Hg-associated neurochemical biomarker responses, interesting biphasic responses were observed with an inflection point between 1 and 5 ppm dw in the brain. In the reference bats Hg-associated decreases in MAO (r = -0.61; p < 0.05) and ChE (r = -0.79; p < 0.01) were found in a manner expected but these were not found in the bats from the contaminated site. Owing to high Hg exposures, differences in Hg metabolism, and the importance of the aforementioned neurochemicals in multiple facets of animal health, altered or perhaps even a lack of expected neurochemical responses in Hg-contaminated bats raise questions about the ecological and physiological impacts of Hg on the bat population as well as the broader ecosystem in the South River.


Asunto(s)
Quirópteros/fisiología , Monitoreo del Ambiente/métodos , Mercurio/toxicidad , Compuestos de Metilmercurio/toxicidad , Ríos/química , Animales , Biomarcadores/análisis , Encéfalo/metabolismo , Quirópteros/crecimiento & desarrollo , Ecosistema , Contaminantes Ambientales/toxicidad , Monoaminooxidasa/análisis , Monoaminooxidasa/metabolismo , Receptores Muscarínicos/análisis , Receptores Muscarínicos/metabolismo , Virginia
5.
Environ Pollut ; 159(12): 3302-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21903311

RESUMEN

Mercury (Hg) is a persistent environmental contaminant found in many freshwater and marine ecosystems. Historical Hg contamination in rivers can impact the surrounding terrestrial ecosystem, but there is little known about how far downstream this contamination persists. In 2009, we sampled terrestrial forest songbirds at five floodplain sites up to 137 km downstream of an historical source of Hg along the South and South Fork Shenandoah Rivers (Virginia, USA). We found that blood total Hg concentrations remained elevated over the entire sampling area and there was little evidence of decline with distance. While it is well known that Hg is a pervasive and long-lasting aquatic contaminant, it has only been recently recognized that it also biomagnifies effectively in floodplain forest food webs. This study extends the area of concern for terrestrial habitats near contaminated rivers for more than 100 km downstream from a waterborne Hg point source.


Asunto(s)
Ecosistema , Exposición a Riesgos Ambientales , Mercurio/sangre , Pájaros Cantores/sangre , Migración Animal , Animales , Cadena Alimentaria , Mercurio/toxicidad , Ríos/química , Pájaros Cantores/fisiología , Virginia , Contaminantes Químicos del Agua/sangre , Contaminantes Químicos del Agua/toxicidad
6.
Environ Toxicol Chem ; 29(4): 1013-20, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20821533

RESUMEN

Mercury trophic transfer in the South River (VA, USA) was modeled to guide river remediation decision making. Sixteen different biota types were collected at six sites within 23 river miles. Mercury biomagnification was modeled using a general biomagnification model based on delta(15)N and distance from the historic mercury release. Methylmercury trophic transfer was clearer than that for total Hg and, therefore, was used to build the predictive model (r(2) (prediction) = 0.76). The methylmercury biomagnification factors were similar among sites, but model intercept did increase with distance down river. Minimum Akaike's Information Criterion Estimation (MAICE) justified the incorporation of distance in the model. A model with a very similar biomagnification factor to the South River (95% confidence intervals [CI] = 0.38-0.52) was produced for a second contaminated Virginia river, the North Fork Holston River (95% CI = 0.41-0.55). Percent of total Hg that was methylmercury increased monotonically with trophic position. Trophic models based on delta(15)N were adequate for predicting changes in mercury concentrations in edible fish under different remediation scenarios.


Asunto(s)
Mercurio/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Animales , Biodegradación Ambiental , Monitoreo del Ambiente , Mercurio/metabolismo , Compuestos de Metilmercurio/análisis , Modelos Biológicos , Contaminantes Químicos del Agua/metabolismo
7.
Environ Toxicol Chem ; 24(5): 1242-6, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-16111006

RESUMEN

Mercury (Hg) contamination is receiving increased attention globally because of human health and environmental concerns. Few laboratory studies have examined the toxicity of Hg on early life stages of freshwater mussels, despite evidence that glochidia and juvenile life stages are more sensitive to contaminants than adults. Three bioassays (72-h acute glochidia, 96-h acute juvenile, and 21-d chronic juvenile toxicity tests) were conducted by exposing Villosa iris to mercuric chloride salt (HgCl2). Glochidia were more sensitive to acute exposure than were juvenile mussels, as 24-, 48-, and 72-h median lethal concentration values (LC50) for glochidia were >107, 39, and 14 microg Hg/L, respectively. The 24-, 48-, 72-, and 96-h values for juveniles were 162, 135, 114, and 99 microg Hg/L, respectively. In the chronic test, juveniles exposed to Hg treatments > or = 8 microg/L grew significantly less than did control organisms. The substantial difference in juvenile test endpoints emphasizes the importance of assessing chronic exposure and sublethal effects. Overall, our study supports the use of glochidia as a surrogate life stage for juveniles in acute toxicity tests. However, as glochidia may be used only in short-term tests, it is imperative that an integrated approach be taken when assessing risk to freshwater mussels, as their unique life history is atypical of standard test organisms. Therefore, we strongly advocate the use of both glochidia and juvenile life stages for risk assessment.


Asunto(s)
Bivalvos/efectos de los fármacos , Agua Dulce/química , Estadios del Ciclo de Vida/fisiología , Mercurio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Bivalvos/crecimiento & desarrollo , Medición de Riesgo , Pruebas de Toxicidad Aguda/métodos , Pruebas de Toxicidad Crónica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA