Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39257831

RESUMEN

The development of committed erythroid progenitors and their continued maturation into mature erythrocytes requires the cytokine erythropoietin (Epo). Here, we describe the immunophenotypic identification of a unique Epo-dependent colony-forming unit-erythroid (CFU-E) cell subtype that forms during early erythropoiesis (EE). This previously undescribed CFU-E subtype, termed late-CFU-E (lateC), lacks surface expression of the characteristic erythroid marker CD235a (glycophorin A) but has high levels of CD71 and CD105. LateCs could be prospectively detected in human bone marrow (BM) cells and, upon isolation and reculture, exhibited the potential to form CFU-E colonies in medium containing only Epo (no other cytokines) and continued differentiation along the erythroid trajectory. Analysis of ex vivo cultures of BM CD34 + cells showed that acquisition of the CD7 hi CD105 hi phenotype in lateCs is gradual and occurs through the formation of four EE cell subtypes. Of these, two are CD34 + burst-forming unit-erythroid (BFU-E) cells, distinguishable as CD7 lo CD105 lo early BFU-E and CD7 hi CD105 lo late BFU-E, and two are CD34 - CFU-Es, also distinguishable as CD71 lo CD105 lo early CFU-E and CD7 hi CD105 lo mid-CFU-E. The transition of these EE populations is accompanied by a rise in CD36 expression, such that all lateCs are CD36 + . Single cell RNA-sequencing analysis confirmed Epo-dependent formation of a CFU-E cluster that exhibits high coexpression of CD71, CD105, and CD36 transcripts. Gene set enrichment analysis revealed the involvement of genes specific to fatty acid and cholesterol metabolism in lateC formation. Overall, in addition to identifying a key Epo-dependent EE cell stage, this study provides a framework for investigation into mechanisms underlying other erythropoiesis-stimulating agents.

2.
Exp Hematol ; 123: 1-17, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37172755

RESUMEN

Erythropoiesis, the development of erythrocytes from hematopoietic stem cells, occurs through four phases: erythroid progenitor (EP) development, early erythropoiesis, terminal erythroid differentiation (TED), and maturation. According to the classical model that is based on immunophenotypic profiles of cell populations, each of these phases comprises multiple differentiation states that arise in a hierarchical manner. After segregation of lymphoid potential, erythroid priming begins during progenitor development and progresses through progenitor cell types that have multilineage potential. Complete separation of the erythroid lineage is achieved during early erythropoiesis with the formation of unipotent EPs: burst-forming unit-erythroid and colony-forming unit-erythroid. These erythroid-committed progenitors undergo TED and maturation, which involves expulsion of the nucleus and remodeling to form functional biconcave, hemoglobin-filled erythrocytes. In the last decade or so, many studies employing advanced techniques such as single-cell RNA-sequencing (scRNA-seq) as well as the conventional methods, including colony-forming cell assays and immunophenotyping, have revealed heterogeneity within the stem, progenitor, and erythroblast stages, and uncovered alternate paths for segregation of erythroid lineage potential. In this review, we provide an in-depth account of immunophenotypic profiles of all cell types within erythropoiesis, highlight studies that demonstrate heterogeneous erythroid stages, and describe deviations to the classical model of erythropoiesis. Overall, although scRNA-seq approaches have provided new insights, flow cytometry remains relevant and is the primary method for validation of novel immunophenotypes.


Asunto(s)
Eritropoyesis , Células Madre Hematopoyéticas , Humanos , Linaje de la Célula , Diferenciación Celular/genética , Células Madre Hematopoyéticas/metabolismo , Eritropoyesis/genética , Células Precursoras Eritroides/metabolismo
3.
Exp Hematol ; 97: 32-46.e35, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33675821

RESUMEN

Oxygen is a critical noncellular component of the bone marrow microenvironment that plays an important role in the development of hematopoietic cell lineages. In this study, we investigated the impact of low oxygen (hypoxia) on ex vivo myeloerythroid differentiation of human cord blood-derived CD34+ hematopoietic stem and progenitor cells. We characterized the culture conditions to demonstrate that low oxygen inhibits cell proliferation and causes a metabolic shift in the stem and progenitor populations. We found that hypoxia promotes erythroid differentiation by supporting the development of progenitor populations. Hypoxia also increases the megakaryoerythroid potential of the common myeloid progenitors and the erythroid potential of megakaryoerythroid progenitors and significantly accelerates maturation of erythroid cells. Specifically, we determined that hypoxia promotes the loss of CD71 and the appearance of the erythroid markers CD235a and CD239. Further, evaluation of erythroid populations revealed a hypoxia-induced increase in proerythroblasts and in enucleation of CD235a+ cells. These results reveal the extensive role of hypoxia at multiple steps during erythroid development. Overall, our work establishes a valuable model for further investigations into the relationship between erythroid progenitors and/or erythroblast populations and their hypoxic microenvironment.


Asunto(s)
Eritroblastos/citología , Células Eritroides/citología , Células Precursoras Eritroides/citología , Eritropoyesis , Hipoxia de la Célula , Proliferación Celular , Células Cultivadas , Eritroblastos/metabolismo , Células Eritroides/metabolismo , Células Precursoras Eritroides/metabolismo , Humanos , Metaboloma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA