Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39064357

RESUMEN

The rapid advancement of the Internet of Things (IoT) serves as a significant driving force behind the development of innovative sensors and actuators. This technological progression has created a substantial demand for new flexible pressure sensors, essential for a variety of applications ranging from wearable devices to smart home systems. In response to this growing need, our laboratory has developed a novel flexible pressure sensor, designed to offer an improved performance and adaptability. This study aims to present our newly developed sensor, detailing the comprehensive investigations we conducted to understand how different parameters affect its behaviour. Specifically, we examined the influence of the resistive layer thickness and the elastomeric substrate on the sensor's performance. The resistive layer, a critical component of the sensor, directly impacts its sensitivity and accuracy. By experimenting with varying thicknesses, we aimed to identify the optimal configuration that maximizes sensor efficiency. Similarly, the elastomeric substrate, which provides the sensor's flexibility, was scrutinized to determine how its properties affect the sensor's overall functionality. Our findings highlight the delicate balance required between the resistive layer and the elastomeric substrate to achieve a sensor that is both highly sensitive and durable. This research contributes valuable insights into the design and optimization of flexible pressure sensors, paving the way for more advanced IoT applications.

2.
Nanomaterials (Basel) ; 14(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39057903

RESUMEN

The present communication reports on the effect of the sprayed solution volume variation (as a thickness variation element) on the detailed Raman spectroscopy for WO3 thin films with different thicknesses grown from precursor solutions with two different concentrations. Walls-like structured monoclinic WO3 thin films were obtained by the spray deposition method for further integration in gas sensors. A detailed analysis of the two series of samples shows that the increase in thickness strongly affects the films' morphology, while their crystalline structure is only slightly affected. The Raman analysis contributes to refining the structural feature clarifications. It was observed that, for 0.05 M precursor concentration series, thinner films (lower volume) show less intense peaks, indicating more defects and lower crystallinity, while thicker films (higher volume) exhibit sharper and more intense peaks, suggesting improved crystallinity and structural order. For higher precursor concentration 0.1 M series, films at higher precursor concentrations show overall more intense and sharper peaks across all thicknesses, indicating higher crystallinity and fewer defects. Differences in peak intensity and presence reflect variations in film morphology and structural properties due to increased precursor concentration. Further studies are ongoing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA