Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(19): 25445-25461, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703131

RESUMEN

Naturally occurring coatings on aluminum metal, such as its oxide or hydroxide, serve to protect the material from corrosion. Understanding the conditions under which these coatings mechanically fail is therefore expected to be an important aspect of predictive models for aluminum component lifetimes. To this end, we develop and apply a molecular dynamics (MD) modeling framework for conducting tension tests that is capable of isolating factors governing the mechanical strength as a function of coating chemistry, defect morphology, and variables associated with the loading path. We consider two representative materials, including γ-Al2O3 and γ-Al(OH)3 (i.e., oxide and hydroxide), both of which form readily as aluminum surface coatings. Our results indicate that defects have a significant bearing on the strength of aluminum oxide, with grain boundaries serving to reduce the strain at failure from εzz = 0.300 to 0.219, relative to perfect single crystal. Our simulations also predict that porosity lowers the elastic stiffness and yield strength of the oxide. Relative to perfect crystal, we find porosity factors of 5%, 10% and 20% decrease the yield stress by 26%, 36% and 53%, respectively. MD predicts that perfect hydroxide and oxide single crystal have respective strains at failure of 0.08 and 0.31 under tensile uniaxial strain loading, and that the corresponding yield stresses are respectively 1.6 and 11.1 GPa. These data indicate that the hydroxide is substantially more susceptible to mechanical failure than the oxide. Our results, coupled with literature findings that indicate hot and humid conditions favor formation of hydroxide and defective oxide coatings, indicate the potential for a complicated dependence of aluminum corrosion susceptibility and stress corrosion cracking on aging history.

2.
ACS Appl Mater Interfaces ; 15(23): 28716-28730, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37221453

RESUMEN

Bare aluminum metal surfaces are highly reactive, which leads to the spontaneous formation of a protective oxide surface layer. Because many subsequent corrosive processes are mediated by water, the structure and dynamics of water at the oxide interface are anticipated to influence corrosion kinetics. Using molecular dynamics simulations with a reactive force field, we model the behavior of aqueous aluminum metal ions in water adsorbed onto aluminum oxide surfaces across a range of ion concentrations and water film thicknesses corresponding to increasing relative humidity. We find that the structure and diffusivity of both the water and the metal ions depend strongly on the humidity of the environment and the relative height within the adsorbed water film. Aqueous aluminum ion diffusion rates in water films corresponding to a typical indoor relative humidity of 30% are found to be more than 2 orders of magnitude slower than self-diffusion of water in the bulk limit. Connections between metal ion diffusivity and corrosion reaction kinetics are assessed parametrically with a reductionist model based on a 1D continuum reaction-diffusion equation. Our results highlight the importance of incorporating the properties specific to interfacial water in predictive models of aluminum corrosion.

3.
J Phys Chem Lett ; 11(3): 986-992, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31927924

RESUMEN

Obtaining statistical distributions by sampling a large number of conformations is vital for an accurate description of temperature-dependent properties of chemical systems. However, constructing distributions with 105-106 samples is computationally challenging because of the prohibitively high computational cost of performing first-principles quantum mechanical calculations. In this work, we present a new technique called the effective stochastic potential configuration interaction singles (ESP-CIS) method to obtain excitation energies. The ESP-CIS method uses random matrix theory for the construction of an effective stochastic representation of the Fock operator and combines it with the CIS method. Excited-state energies of PbS quantum dots (0.75-1.75 nm) at temperatures of 10-400 K were calculated using the ESP-CIS method. Results from a total of 27 million excitation energy calculations revealed the distributions to be sub-Gaussian in nature with negative skewness, which progressively became red-shifted with increasing temperature. This study demonstrates the efficacy of the ESP-CIS method as a general-purpose method for efficient excited-state calculations.

4.
J Chem Phys ; 149(1): 014103, 2018 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-29981557

RESUMEN

The relationship between structure and property is central to chemistry and enables the understanding of chemical phenomena and processes. Need for an efficient conformational sampling of chemical systems arises from the presence of solvents and the existence of non-zero temperatures. However, conformational sampling of structures to compute molecular quantum mechanical properties is computationally expensive because a large number of electronic structure calculations are required. In this work, the development and implementation of the effective stochastic potential (ESP) method is presented to perform efficient conformational sampling of molecules. The overarching goal of this work is to alleviate the computational bottleneck associated with performing a large number of electronic structure calculations required for conformational sampling. We introduce the concept of a deformation potential and demonstrate its existence by the proof-by-construction approach. A statistical description of the fluctuations in the deformation potential due to non-zero temperature was obtained using infinite-order moment expansion of the distribution. The formal mathematical definition of the ESP was derived using the functional minimization approach to match the infinite-order moment expansion for the deformation potential. Practical implementation of the ESP was obtained using the random-matrix theory method. The developed method was applied to two proof-of-concept calculations of the distribution of HOMO-LUMO gaps in water molecules and solvated CdSe clusters at 300 K. The need for large sample size to obtain statistically meaningful results was demonstrated by performing 105 ESP calculations. The results from these prototype calculations demonstrated the efficacy of the ESP method for performing efficient conformational sampling. We envision that the fundamental nature of this work will not only extend our knowledge of chemical systems at non-zero temperatures but also generate new insights for innovative technological applications.

5.
J Chem Theory Comput ; 14(7): 3656-3666, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29782165

RESUMEN

Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination, and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and time-dependent density functional theory (TDDFT) formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as many-body perturbation theory formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems, and results were found to be in good agreement with the EOM-CCSD and GW+BSE methods. The numerical results highlight the effectiveness of the developed method for overcoming the computational barrier of accurately determining the electron-hole interaction kernel to applications of large finite systems such as quantum dots and nanorods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA