Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(28): 33091-33101, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34247474

RESUMEN

We herein describe a rational design of a heterogeneous catalyst composed of a dinuclear cuprate anion being immobilized electrostatically on one surface of Janus-type nanosheets while the other surface is decorated with highly hydrophobic octyl groups. The catalyst was found to be well dispersible in the organic phase of a biphasic aqueous/organic mixture. It was characterized by means of elemental analysis, atomic absorption spectroscopy, mass spectrometry, N2 absorption-desorption analysis, thermogravimetric analysis, scanning electron microscopy (SEM), and solid-state 13C and 29Si cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy. The Janus nature of the catalyst was investigated by employing a selective surface labeling method and by means of SEM. The catalyst shows higher activity compared to a non-Janus analogue in a biphasic synthesis. It was successfully used for the azide-alkyne cycloaddition and the Chan-Lam C-N coupling reaction. In addition, new and simple ways have been established for the production of a coumarin-triazole derivative and for the synthesis of the biologically active compound Monastrol via a solvent-free Biginelli reaction. The role of the dinuclear copper centers is discussed mechanistically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA