Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 15168, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938998

RESUMEN

Stochastic networks for the clock were identified by ensemble methods using genetic algorithms that captured the amplitude and period variation in single cell oscillators of Neurospora crassa. The genetic algorithms were at least an order of magnitude faster than ensemble methods using parallel tempering and appeared to provide a globally optimum solution from a random start in the initial guess of model parameters (i.e., rate constants and initial counts of molecules in a cell). The resulting goodness of fit [Formula: see text] was roughly halved versus solutions produced by ensemble methods using parallel tempering, and the resulting [Formula: see text] per data point was only [Formula: see text] = 2,708.05/953 = 2.84. The fitted model ensemble was robust to variation in proxies for "cell size". The fitted neutral models without cellular communication between single cells isolated by microfluidics provided evidence for only one Stochastic Resonance at one common level of stochastic intracellular noise across days from 6 to 36 h of light/dark (L/D) or in a D/D experiment. When the light-driven phase synchronization was strong as measured by the Kuramoto (K), there was degradation in the single cell oscillations away from the stochastic resonance. The rate constants for the stochastic clock network are consistent with those determined on a macroscopic scale of 107 cells.


Asunto(s)
Relojes Biológicos/fisiología , Modelos Biológicos , Neurospora crassa/fisiología , Relojes Biológicos/genética , Relojes Biológicos/efectos de la radiación , Redes Reguladoras de Genes , Genes Fúngicos , Luz , Neurospora crassa/genética , Neurospora crassa/efectos de la radiación , Análisis de la Célula Individual , Procesos Estocásticos
2.
Yale J Biol Med ; 92(2): 169-178, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31249477

RESUMEN

Four inter-related measures of phase are described to study the phase synchronization of cellular oscillators, and computation of these measures is described and illustrated on single cell fluorescence data from the model filamentous fungus, Neurospora crassa. One of these four measures is the phase shift ϕ in a sinusoid of the form x(t) = A(cos(ωt + ϕ), where t is time. The other measures arise by creating a replica of the periodic process x(t) called the Hilbert transform x̃(t), which is 90 degrees out of phase with the original process x(t). The second phase measure is the phase angle FH(t) between the replica x̃(t) and x(t), taking values between -π and π. At extreme values the Hilbert Phase is discontinuous, and a continuous form FC(t) of the Hilbert Phase is used, measuring time on the nonnegative real axis (t). The continuous Hilbert Phase FC(t) is used to define the phase MC(t1,t0) for an experiment beginning at time t0 and ending at time t1. In that phase differences at time t0 are often of ancillary interest, the Hilbert Phase FC(t0) is subtracted from FC(t1). This difference is divided by 2π to obtain the phase MC(t1,t0) in cycles. Both the Hilbert Phase FC(t) and the phase MC(t1,t0) are functions of time and useful in studying when oscillators phase-synchronize in time in signal processing and circadian rhythms in particular. The phase of cellular clocks is fundamentally different from circadian clocks at the macroscopic scale because there is an hourly cycle superimposed on the circadian cycle.


Asunto(s)
Relojes Biológicos/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Neurospora crassa/fisiología , Análisis de la Célula Individual/métodos , Algoritmos , Relojes Biológicos/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Mediciones Luminiscentes/métodos , Modelos Biológicos , Neurospora crassa/citología , Neurospora crassa/metabolismo , Procesos Estocásticos , Factores de Tiempo
3.
PLoS One ; 13(5): e0196435, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29768444

RESUMEN

A major challenge in systems biology is to infer the parameters of regulatory networks that operate in a noisy environment, such as in a single cell. In a stochastic regime it is hard to distinguish noise from the real signal and to infer the noise contribution to the dynamical behavior. When the genetic network displays oscillatory dynamics, it is even harder to infer the parameters that produce the oscillations. To address this issue we introduce a new estimation method built on a combination of stochastic simulations, mass action kinetics and ensemble network simulations in which we match the average periodogram and phase of the model to that of the data. The method is relatively fast (compared to Metropolis-Hastings Monte Carlo Methods), easy to parallelize, applicable to large oscillatory networks and large (~2000 cells) single cell expression data sets, and it quantifies the noise impact on the observed dynamics. Standard errors of estimated rate coefficients are typically two orders of magnitude smaller than the mean from single cell experiments with on the order of ~1000 cells. We also provide a method to assess the goodness of fit of the stochastic network using the Hilbert phase of single cells. An analysis of phase departures from the null model with no communication between cells is consistent with a hypothesis of Stochastic Resonance describing single cell oscillators. Stochastic Resonance provides a physical mechanism whereby intracellular noise plays a positive role in establishing oscillatory behavior, but may require model parameters, such as rate coefficients, that differ substantially from those extracted at the macroscopic level from measurements on populations of millions of communicating, synchronized cells.


Asunto(s)
Relojes Biológicos/genética , Redes Reguladoras de Genes , Neurospora crassa/genética , Algoritmos , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Simulación por Computador , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Cinética , Cadenas de Markov , Modelos Biológicos , Método de Montecarlo , Neurospora crassa/metabolismo , Relación Señal-Ruido , Análisis de la Célula Individual , Procesos Estocásticos , Biología de Sistemas
4.
PLoS One ; 9(10): e110234, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25356931

RESUMEN

Doing large-scale genomics experiments can be expensive, and so experimenters want to get the most information out of each experiment. To this end the Maximally Informative Next Experiment (MINE) criterion for experimental design was developed. Here we explore this idea in a simplified context, the linear model. Four variations of the MINE method for the linear model were created: MINE-like, MINE, MINE with random orthonormal basis, and MINE with random rotation. Each method varies in how it maximizes the MINE criterion. Theorem 1 establishes sufficient conditions for the maximization of the MINE criterion under the linear model. Theorem 2 establishes when the MINE criterion is equivalent to the classic design criterion of D-optimality. By simulation under the linear model, we establish that the MINE with random orthonormal basis and MINE with random rotation are faster to discover the true linear relation with p regression coefficients and n observations when p>>n. We also establish in simulations with n<100, p=1000, σ=0.01 and 1000 replicates that these two variations of MINE also display a lower false positive rate than the MINE-like method and additionally, for a majority of the experiments, for the MINE method.


Asunto(s)
Genómica/métodos , Modelos Genéticos
5.
PLoS One ; 6(6): e20671, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21695121

RESUMEN

An ensemble of genetic networks that describe how the model fungal system, Neurospora crassa, utilizes quinic acid (QA) as a sole carbon source has been identified previously. A genetic network for QA metabolism involves the genes, qa-1F and qa-1S, that encode a transcriptional activator and repressor, respectively and structural genes, qa-2, qa-3, qa-4, qa-x, and qa-y. By a series of 4 separate and independent, model-guided, microarray experiments a total of 50 genes are identified as QA-responsive and hypothesized to be under QA-1F control and/or the control of a second QA-responsive transcription factor (NCU03643) both in the fungal binuclear Zn(II)2Cys6 cluster family. QA-1F regulation is not sufficient to explain the quantitative variation in expression profiles of the 50 QA-responsive genes. QA-responsive genes include genes with products in 8 mutually connected metabolic pathways with 7 of them one step removed from the tricarboxylic (TCA) Cycle and with 7 of them one step removed from glycolysis: (1) starch and sucrose metabolism; (2) glycolysis/glucanogenesis; (3) TCA Cycle; (4) butanoate metabolism; (5) pyruvate metabolism; (6) aromatic amino acid and QA metabolism; (7) valine, leucine, and isoleucine degradation; and (8) transport of sugars and amino acids. Gene products both in aromatic amino acid and QA metabolism and transport show an immediate response to shift to QA, while genes with products in the remaining 7 metabolic modules generally show a delayed response to shift to QA. The additional QA-responsive cutinase transcription factor-1ß (NCU03643) is found to have a delayed response to shift to QA. The series of microarray experiments are used to expand the previously identified genetic network describing the qa gene cluster to include all 50 QA-responsive genes including the second transcription factor (NCU03643). These studies illustrate new methodologies from systems biology to guide model-driven discoveries about a core metabolic network involving carbon and amino acid metabolism in N. crassa.


Asunto(s)
Genes Fúngicos/genética , Familia de Multigenes/genética , Neurospora crassa/genética , Ácido Quínico/metabolismo , Biología de Sistemas , Sitios de Unión , Biología Computacional , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/genética , Cinética , Análisis de los Mínimos Cuadrados , Modelos Genéticos , Neurospora crassa/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Ácido Quínico/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
PLoS One ; 3(8): e3105, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18769678

RESUMEN

A model-driven discovery process, Computing Life, is used to identify an ensemble of genetic networks that describe the biological clock. A clock mechanism involving the genes white-collar-1 and white-collar-2 (wc-1 and wc-2) that encode a transcriptional activator (as well as a blue-light receptor) and an oscillator frequency (frq) that encodes a cyclin that deactivates the activator is used to guide this discovery process through three cycles of microarray experiments. Central to this discovery process is a new methodology for the rational design of a Maximally Informative Next Experiment (MINE), based on the genetic network ensemble. In each experimentation cycle, the MINE approach is used to select the most informative new experiment in order to mine for clock-controlled genes, the outputs of the clock. As much as 25% of the N. crassa transcriptome appears to be under clock-control. Clock outputs include genes with products in DNA metabolism, ribosome biogenesis in RNA metabolism, cell cycle, protein metabolism, transport, carbon metabolism, isoprenoid (including carotenoid) biosynthesis, development, and varied signaling processes. Genes under the transcription factor complex WCC ( = WC-1/WC-2) control were resolved into four classes, circadian only (612 genes), light-responsive only (396), both circadian and light-responsive (328), and neither circadian nor light-responsive (987). In each of three cycles of microarray experiments data support that wc-1 and wc-2 are auto-regulated by WCC. Among 11,000 N. crassa genes a total of 295 genes, including a large fraction of phosphatases/kinases, appear to be under the immediate control of the FRQ oscillator as validated by 4 independent microarray experiments. Ribosomal RNA processing and assembly rather than its transcription appears to be under clock control, suggesting a new mechanism for the post-transcriptional control of clock-controlled genes.


Asunto(s)
Relojes Biológicos , Genes Fúngicos , Neurospora crassa/genética , Neurospora crassa/fisiología , Biología de Sistemas/métodos , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes/genética , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos
7.
IET Syst Biol ; 1(5): 257-65, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17907673

RESUMEN

A major challenge of systems biology is explaining complex traits, such as the biological clock, in terms of the kinetics of macromolecules. The clock poses at least four challenges for systems biology: (i) identifying the genetic network to explain the clock mechanism quantitatively; (ii) specifying the clock's functional connection to a thousand or more genes and their products in the genome; (iii) explaining the clock's response to light and other environmental cues; and (iv) explaining how the clock's genetic network evolves. Here, the authors illustrate an approach to these problems by fitting an ensemble of genetic networks to microarray data derived from oligonucleotide arrays with approximately all 11 000 Neurospora crassa genes represented. A promising genetic network for the clock mechanism is identified.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Neurospora crassa/fisiología , Transducción de Señal/fisiología , Simulación por Computador , Regulación de la Expresión Génica/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Biología de Sistemas/métodos , Factores de Transcripción/metabolismo
8.
Proc Natl Acad Sci U S A ; 99(26): 16904-9, 2002 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-12477937

RESUMEN

A chemical reaction network for the regulation of the quinic acid (qa) gene cluster of Neurospora crassa is proposed. An efficient Monte Carlo method for walking through the parameter space of possible chemical reaction networks is developed to identify an ensemble of deterministic kinetics models with rate constants consistent with RNA and protein profiling data. This method was successful in identifying a model ensemble fitting available RNA profiling data on the qa gene cluster.


Asunto(s)
Genes Fúngicos , Genes Reguladores , Neurospora crassa/genética , Ácido Quínico/metabolismo , Método de Montecarlo , Familia de Multigenes , Neurospora crassa/metabolismo , ARN Mensajero/análisis
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(5 Pt 2): 056103, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12059643

RESUMEN

The damage spreading technique has been used to study the general integer and half-integer spin-S Blume-Capel model on the square lattice within a Metropolis-type dynamics. For S=1 and 2 integer spins, our results suggest that there exists one multicritical point along the order-disorder transition line; for S=3/2 and 5/2 half-integer spins, our results show that this multicritical behavior does not exist for this model.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(1 Pt 2): 016114, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11800743

RESUMEN

We apply the damage spreading technique to study a mixed spin Ising model consisting of spin 1/2 and spin 1 with a crystal field interaction on the square lattice within a kind of Metropolis dynamics. The completely different behavior, depending on the value of the crystal field interaction, strongly suggests there may exist a dynamical tricritical point where the phase transition may change from the second order to the first order for this model.

12.
Phys Rev Lett ; 75(24): 4504-4507, 1995 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-10059925
15.
Phys Rev Lett ; 69(10): 1600-1603, 1992 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-10046263
17.
Phys Rev B Condens Matter ; 43(4): 3771-3774, 1991 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-9997716
18.
Phys Rev B Condens Matter ; 41(13): 8702-8710, 1990 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-9993208
19.
Phys Rev B Condens Matter ; 41(4): 1789-1796, 1990 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-9993905
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA