Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Syst Biol (Stevenage) ; 152(4): 276-84, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16986271

RESUMEN

This paper describes computational and experimental work on pattern formation in Drosophila egg development (oogenesis), an established experimental model for studying cell fate diversification in developing tissues. Epidermal growth factor receptor (EGFR) is a key regulator of pattern formation and morphogenesis in Drosophila oogenesis. EGFR signalling in oogenesis can be genetically manipulated and monitored at many levels, leading to large sets of heterogeneous data that enable the formulation of increasingly quantitative models of pattern formation in these systems.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Drosophila/fisiología , Receptores ErbB/metabolismo , Modelos Biológicos , Oogénesis/fisiología , Animales , Transducción de Señal/fisiología , Biología de Sistemas/métodos
2.
Dev Cell ; 1(4): 443-5, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11703933

RESUMEN

Recent studies of border cell migration during Drosophila oogenesis demonstrate that the EGFR and PDGFR signaling pathways act in a partially redundant manner to guide this process. Evidence presented shows that PDGFR signaling directs border cell migration via Rac and the Rac activator Mbc/CED-5/Dock180.


Asunto(s)
Movimiento Celular/fisiología , Drosophila/embriología , Oogénesis/fisiología , Transducción de Señal/fisiología , Animales , Femenino
3.
Development ; 127(24): 5541-50, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11076773

RESUMEN

Drosophila embryonic dorsal-ventral polarity originates in the ovarian follicle through the restriction of pipe gene expression to a ventral subpopulation of follicle cells. Pipe, a homolog of vertebrate glycosaminoglycan-modifying enzymes, directs the ventral activation of an extracellular serine proteolytic cascade which defines the ventral side of the embryo. When pipe is expressed uniformly in the follicle cell layer, a strong ventralization of the resulting embryos is observed. Here, we show that this ventralization is dependent on the other members of the dorsal group of genes controlling dorsal-ventral polarity, but not on the state of the Epidermal Growth Factor Receptor signal transduction pathway which defines egg chamber polarity. Pipe protein expressed in vertebrate tissue culture cells localizes to the endoplasmic reticulum. Strikingly, coexpression of the dorsal group gene windbeutel in those cells directs Pipe to the Golgi. Similarly, Pipe protein exhibits an altered subcellular localization in the follicle cells of females mutant for windbeutel. Thus, Windbeutel protein enables the correct subcellular distribution of Pipe to facilitate its pattern-forming activity.


Asunto(s)
Proteínas de Drosophila , Drosophila/genética , Drosophila/metabolismo , Genes de Insecto , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Animales , Tipificación del Cuerpo/genética , Células COS , Drosophila/enzimología , Femenino , Aparato de Golgi/metabolismo , Microscopía Electrónica , Mutación , Ovario/embriología , Ovario/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Fracciones Subcelulares/metabolismo , Distribución Tisular , Transfección
4.
Cell ; 103(1): 51-61, 2000 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-11051547

RESUMEN

During Drosophila oogenesis, asymmetrically localized Gurken activates the EGF receptor (Egfr) and determines dorsal follicle cell fates. Using a mosaic follicle cell system we have identified a mutation in the D-cbl gene which causes hyperactivation of the Egfr pathway. Cbl proteins are known to downregulate activated receptors. We find that the abnormal Egfr activation is ligand dependent. Our results show that the precise regulation of Egfr activity necessary to establish different follicle cell fates requires two levels of control. The localized ligand Gurken activates Egfr to different levels in different follicle cells. In addition, Egfr activity has to be repressed through the activity of D-cbl to ensure the absence of signaling in the ventral most follicle cells.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila , Drosophila/embriología , Receptores ErbB/genética , Oogénesis/genética , Proteínas Tirosina Fosfatasas , Proteínas Proto-Oncogénicas/genética , Transducción de Señal/genética , Factor de Crecimiento Transformador alfa , Alelos , Animales , Células Clonales/metabolismo , Análisis Mutacional de ADN , Drosophila/genética , Desarrollo Embrionario y Fetal/genética , Receptores ErbB/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas de Insectos/genética , Proteínas de la Membrana/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Folículo Ovárico/citología , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/metabolismo , Óvulo/crecimiento & desarrollo , Embarazo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-cbl , Sulfotransferasas/genética , Factores de Crecimiento Transformadores/genética
5.
Development ; 127(22): 4753-62, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11044391

RESUMEN

Mutations in the encore (enc) gene of Drosophila melanogaster cause one extra round of mitosis in the germline, resulting in the formation of egg chambers with extra nurse cells. In addition, enc mutations affect the accumulation of Gurken protein within the oocyte, leading to the production of ventralized eggs. Here we show that enc mutants also exhibit abnormalities in karyosome morphology, similar to other ventralizing mutants such as okra and spindle B. Unlike these mutants, however, the defects in Gurken accumulation and karyosome formation do not result from activation of a meiotic checkpoint. Furthermore, we demonstrate that the requirement for enc in these processes is temporally distinct from its role in germline mitosis. Cloning of the enc locus and generation of anti-Enc antibodies reveal that enc encodes a large novel protein that accumulates within the oocyte cytoplasm and colocalizes with grk mRNA. We argue that the enc mutant phenotypes reflect a role for Enc in the regulation of several RNA targets.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Proteínas del Huevo/genética , Proteínas del Huevo/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/fisiología , Oogénesis/fisiología , Factor de Crecimiento Transformador alfa , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Núcleo Celular/ultraestructura , Secuencia Conservada , Cartilla de ADN/genética , Drosophila melanogaster/genética , Femenino , Genes de Insecto , Meiosis/genética , Meiosis/fisiología , Datos de Secuencia Molecular , Mutación , Oogénesis/genética , Biosíntesis de Proteínas , Homología de Secuencia de Aminoácido , Factores de Crecimiento Transformadores/genética
6.
Dev Biol ; 221(2): 435-46, 2000 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-10790337

RESUMEN

During Drosophila oogenesis, signaling between the germline and the soma leads to the establishment of polarity in the egg and embryo. This process involves the interaction of gurken (grk), a TGFalpha-like protein, with torpedo (top), the Drosophila EGF receptor (Egfr). In early stage egg chambers, grk RNA is present predominantly along the posterior cortex of the oocyte, and in mid stage egg chambers, the grk transcript becomes tightly localized to the future dorsal anterior corner of the oocyte. This localization of grk RNA restricts the distribution of Gurken protein and is critical in defining both the anterior-posterior and dorsal-ventral axes of the egg. We have determined the genomic sequence of the grk gene. By testing the requirement of various fragments of grk RNA in the localization process, we find localization signals present in both the 5' and 3' regions of the gene. Sequences in the 5' noncoding region allow for accumulation of the transcript within the oocyte in early stage egg chambers, while signals in the coding region and the 3'UTR are necessary for localization in mid to late stage egg chambers. Active translation is not required for localization of the grk RNA. The mechanism of gurken RNA localization, therefore, differs from that of other localized RNAs studied to date.


Asunto(s)
Proteínas de Drosophila , Drosophila/genética , Proteínas de Insectos/genética , Oocitos/fisiología , Oogénesis/genética , Transcripción Genética , Factor de Crecimiento Transformador alfa , Factores de Crecimiento Transformadores/genética , Regiones no Traducidas 3'/genética , Animales , Polaridad Celular , Femenino , Hibridación in Situ , Oocitos/citología , Proteínas Recombinantes de Fusión/biosíntesis
7.
Mech Dev ; 89(1-2): 35-42, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10559478

RESUMEN

During Drosophila oogenesis, localization of the transforming growth factor alpha (TGFalpha)-like signaling molecule Gurken to the oocyte membrane is required for polarity establishment of the egg and embryo. To test Gurken domain functions, full-length and truncated forms of Gurken were expressed ectopically using the UAS/Gal4 expression system, or in the germline using the endogenous promoter. GrkDeltaC, a deletion of the cytoplasmic domain, localizes to the oocyte membrane and can signal. GrkDeltaTC, which lacks the transmembrane and cytoplasmic domains, retains signaling ability when ectopically expressed in somatic cells. However, in the germline, the GrkDeltaTC protein accumulates throughout the oocyte cytoplasm and cannot signal. In addition, we found that several strong gurken alleles contain point mutations in the transmembrane region. We conclude that secretion of Gurken requires its transmembrane region, and propose a model in which the gene cornichon mediates this process.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Drosophila , Drosophila/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Oocitos/metabolismo , Factor de Crecimiento Transformador alfa , Factores de Crecimiento Transformadores/genética , Factores de Crecimiento Transformadores/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Transporte Biológico , Receptores ErbB/metabolismo , Femenino , Datos de Secuencia Molecular , Mutación
8.
Nat Cell Biol ; 1(6): 354-7, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10559962

RESUMEN

The genes okra and spindle-B act during meiosis in Drosophila to repair double-stranded DNA breaks (DSBs) associated with meiotic recombination. Unexpectedly, mutations in these genes cause dorsoventral patterning defects during oogenesis. These defects result from a failure to accumulate Gurken protein, which is required to initiate dorsoventral patterning during oogenesis. Here we find that the block in Gurken accumulation in the oocyte cytoplasm reflects activation of a meiotic checkpoint in response to the persistence of DSBs in the nucleus. We also show that Vasa is a target of this meiotic checkpoint, and so may mediate the checkpoint-dependent translational regulation of Gurken.


Asunto(s)
Proteínas de Drosophila , Proteínas del Huevo/metabolismo , Proteínas de Insectos/genética , Meiosis/fisiología , Oogénesis/fisiología , Biosíntesis de Proteínas , Transducción de Señal/fisiología , Factor de Crecimiento Transformador alfa , Factores de Crecimiento Transformadores/genética , Animales , ARN Helicasas DEAD-box , Daño del ADN , Reparación del ADN , Drosophila/fisiología , Proteínas del Huevo/genética , ARN Helicasas/metabolismo
9.
Cell ; 98(2): 171-80, 1999 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-10428029

RESUMEN

Drosophila melanogaster pair-rule segmentation gene transcripts localize apically of nuclei in blastoderm embryos. This might occur by asymmetric (vectorial) export from one side of the nucleus or by transport within the cytoplasm. We have followed fluorescently labeled pair-rule transcripts postinjection into Drosophila embryos. Naked, microinjected fushi tarazu (ftz) transcripts do not localize in blastoderm embryos, indicating that cytoplasmic mechanisms alone are insufficient for apical targeting. However, prior exposure of ftz to Drosophila or human embryonic nuclear extract leads to rapid, specific, microtubule-dependent transport, arguing against vectorial export. We present evidence that ftz transcript localization involves the Squid (Hrp40) hnRNP protein and that the activity of hnRNP proteins in promoting transcript localization is evolutionarily conserved. We propose that cytoplasmic localization machineries recognize transcripts in the context of nuclear partner proteins.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster/genética , Proteínas de Homeodominio/genética , Hormonas de Insectos/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3'/fisiología , Citoesqueleto de Actina/fisiología , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Blastodermo/metabolismo , Reactivos de Enlaces Cruzados , Citoplasma/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero/metabolismo , Evolución Molecular , Femenino , Factores de Transcripción Fushi Tarazu , Regulación del Desarrollo de la Expresión Génica , Microinyecciones , Microtúbulos/fisiología , Proteínas Nucleares/farmacología , Ovario/química , Unión Proteica/fisiología , ARN Mensajero/farmacocinética , Transcripción Genética/fisiología , Rayos Ultravioleta
10.
Genes Dev ; 13(7): 864-76, 1999 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-10197986

RESUMEN

Heterogeneous nuclear RNA-binding proteins, hnRNPs, have been implicated in nuclear export of mRNAs in organisms from yeast to humans. A germ-line mutation in a Drosophila hnRNP, Squid (Sqd)/hrp40, causes female sterility as a result of mislocalization of gurken (grk) mRNA during oogenesis. Alternative splicing produces three isoforms, SqdA, SqdB, and SqdS. Here we show that these isoforms are not equivalent; SqdA and SqdS perform overlapping but nonidentical functions in grk mRNA localization and protein accumulation, whereas SqdB cannot perform these functions. Furthermore, although all three Sqd isoforms are expressed in the germline cells of the ovary, they display distinct intracellular distributions. Both SqdB and SqdS are detected in germ-line nuclei, whereas SqdA is predominantly cytoplasmic. We show that this differential nuclear accumulation is correlated with a differential association with the nuclear import protein Transportin. Finally, we provide evidence that grk mRNA localization and translation are coupled by an interaction between Sqd and the translational repressor protein Bruno. These results demonstrate the isoform-specific contributions of individual hnRNP proteins in the regulation of a specific mRNA. Moreover, these data suggest a novel role for hnRNPs in localization and translational regulation of mRNAs.


Asunto(s)
Proteínas de Drosophila , Drosophila/metabolismo , Proteínas de Insectos/metabolismo , Oogénesis/fisiología , Proteínas de Unión al ARN/metabolismo , Factor de Crecimiento Transformador alfa , Factores de Crecimiento Transformadores/metabolismo , Animales , Animales Modificados Genéticamente/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Drosophila/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Genotipo , Humanos , Inmunohistoquímica , Carioferinas , Modelos Biológicos , Modelos Genéticos , Proteínas Nucleares/metabolismo , Ovario/citología , Ovario/metabolismo , Óvulo/citología , Óvulo/metabolismo , Isoformas de Proteínas , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Recombinantes de Fusión , Homología de Secuencia de Aminoácido , Transgenes , Regiones no Traducidas/metabolismo
11.
Trends Cell Biol ; 9(1): 1-4, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10087609

RESUMEN

The Drosophila epidermal growth factor receptor (EGFR) is active in different tissues and is involved in diverse processes such as patterning of the embryonic ectoderm, growth and differentiation of imaginal discs and cell survival. During oogenesis, the EGFR is expressed in the somatic follicle cells that surround individual oocyte-nurse cell complexes. In response to germline signals, the follicle cells differentiate in a complex pattern, which in turn leads to the establishment of the egg axes. Two recent reports have shown that the strategies used to pattern posterior follicle cells are different from those used to pattern dorsal follicle cells. In posterior follicle cells, EGFR activity is translated into an on-off response, whereas, in dorsal follicle cells, patterning mechanisms are initiated and refined by feedback that modulates receptor activity over time.


Asunto(s)
Drosophila/fisiología , Receptores ErbB/metabolismo , Oogénesis/fisiología , Transducción de Señal , Animales , Tipificación del Cuerpo , Diferenciación Celular , Drosophila/embriología , Drosophila/metabolismo
12.
Curr Top Dev Biol ; 44: 203-43, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-9891881

RESUMEN

The spatial regulation of Egfr activity in the follicular epithelium of the ovary is achieved by the localization of its ligand, Gurken, within the germline. The final distribution of Gurken within the oocyte appears to be specified both by the localization of the gurken RNA and by regulation of Gurken protein accumulation, possibly at the level of translation. Localized activation of the Egfr distinguishes certain subpopulations of follicle cells, thereby generating asymmetry within the follicular epithelium. In early oogenesis, Egfr activation in posterior follicle cells defines the AP polarity of the egg chamber, and in midoogenesis restriction of Egfr activity to dorsal follicle cells determines DV polarity. A number of factors required downstream of the Egfr have been identified, but the mechanism by which the observed patterning of the follicular epithelium is achieved remains unclear. The dynamic expression patterns of some of these targets suggest that the initial Gurken-Egfr signal at the dorsal side of the follicular epithelium mediates an initial distinction between dorsal and ventral follicle cells and also initiates subsequent refinement processes that determine the final pattern of cell fates. In the dorsal follicle cells, this refinement appears to involve interactions between Egfr targets and may also involve feedback regulation of Egfr activity such that the profile of Egfr activity is modulated over time. In addition, the initial Gurken-Egfr signal negatively regulates the functional domain of another patterning process that governs the establishment of the DV axis of the developing embryo.


Asunto(s)
Drosophila/fisiología , Receptores ErbB/metabolismo , Oogénesis/fisiología , Transducción de Señal/fisiología , Animales , Humanos
13.
Genes Dev ; 12(17): 2711-23, 1998 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-9732269

RESUMEN

okra (okr), spindle-B (spnB), and spindle-D (spnD) are three members of a group of female sterile loci that produce defects in oocyte and egg morphology, including variable dorsal-ventral defects in the eggshell and embryo, anterior-posterior defects in the follicle cell epithelium and in the oocyte, and abnormalities in oocyte nuclear morphology. Many of these phenotypes reflect defects in grk-Egfr signaling processes, and can be accounted for by a failure to accumulate wild-type levels of Gurken and Fs(1)K10. We have cloned okr and spnB, and show that okr encodes the Drosophila homolog of the yeast DNA-repair protein Rad54, and spnB encodes a Rad51-like protein related to the meiosis-specific DMC1 gene. In functional tests of their role in DNA repair, we find that okr behaves like its yeast homolog in that it is required in both mitotic and meiotic cells. In contrast, spnB and spnD appear to be required only in meiosis. The fact that genes involved in meiotic DNA metabolism have specific effects on oocyte patterning implies that the progression of the meiotic cell cycle is coordinated with the regulation of certain developmental events during oogenesis.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila , Drosophila melanogaster/fisiología , Proteínas del Huevo/genética , Genes de Insecto , Oogénesis/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Proteínas del Huevo/química , Proteínas del Huevo/metabolismo , Femenino , Genotipo , Infertilidad Femenina/genética , Datos de Secuencia Molecular , No Disyunción Genética , Proteína Recombinante y Reparadora de ADN Rad52 , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Cromosoma X
14.
Int J Dev Biol ; 42(3): 249-55, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9654005

RESUMEN

We surveyed a total of 228 random insertions of a P[GawB] element to determine the fraction of regulatory regions in the Drosophila genome that activate gene expression specifically in follicle cells versus producing more complex patterns of expression. We monitored the GAL4 expression encoded by this construct in the ovarian follicle cells by crossing the lines to a strain containing a lacZ reporter construct. Sixty four per cent of the insertions showed ovarian expression. To assess the specificity of this expression, 124 of the 228 lines were crossed to strains containing either an activated form of Armadillo, the Drosophila homolog of beta-catenin, or an activated form of Torpedo/Egfr, the Drosophila homolog of the Epidermal Growth Factor receptor, under the control of GAL4 target sites. The lethality and imaginal disc phenotypes observed in these crosses suggest that most random insertions cause GAL4 expression in a variety of tissues. Very few insertions appear to drive expression only in follicle cells. Although the activated form of Armadillo produced higher frequencies of lethality and disk phenotypes, expression in the follicle cell epithelium at later stages of oogenesis did not lead to a visible phenotype. This contrasts with the dorsalized phenotypes observed in the combination of the same GAL4 lines with the activated Torpedo construct.


Asunto(s)
Proteínas de Drosophila , Drosophila/genética , Células Epiteliales/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Genes Reguladores , Proteínas de Saccharomyces cerevisiae , Transactivadores , Animales , Proteínas del Dominio Armadillo , Cadherinas/genética , Proteínas del Citoesqueleto/genética , Elementos Transponibles de ADN , Proteínas de Unión al ADN , Drosophila/crecimiento & desarrollo , Epitelio/crecimiento & desarrollo , Receptores ErbB/genética , Femenino , Genoma , Proteínas de Insectos/genética , Oocitos/citología , Oocitos/fisiología , Fenotipo , Factores de Transcripción/genética , Alas de Animales/crecimiento & desarrollo , beta Catenina
15.
Cell ; 93(2): 253-62, 1998 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-9568717

RESUMEN

Establishment of dorsoventral polarity within the Drosophila embryo requires extraembryonic positional information generated during oogenesis. The genes windbeutel, pipe, and nudel are required within the somatic follicle cells of the ovary for production of this spatial cue. Using a novel follicle cell marker system, we have directly evaluated the effect of mutant follicle cell clones on the embryonic dorsoventral pattern. We find no spatially localized requirement for nudel activity. In contrast, windbeutel and pipe are required only within a restricted ventral region of the follicular epithelium. This ventral region can determine lateral embryonic cell fates nonautonomously, indicating that spatial information originating ventrally is subsequently refined, perhaps via diffusion, to yield the gradient of positional information that determines the embryonic dorsoventral pattern.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila , Drosophila/embriología , Proteínas de Insectos/fisiología , Animales , Drosophila/genética , Proteínas del Huevo/análisis , Proteínas del Huevo/genética , Epitelio/embriología , Femenino , Genes de Insecto/fisiología , Proteínas de Insectos/análisis , Proteínas de Insectos/genética , Mutación , Ovario/embriología , Fenotipo
16.
Genes Dev ; 12(1): 120-31, 1998 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-9420336

RESUMEN

The formation of the dorsoventral axis of the Drosophila embryo depends on cell-cell interactions that take place in the female ovary and involve the activation of transmembrane receptors by secreted ligands. The gene windbeutel functions in the somatic follicle cells of the ovary and is required for the generation of a signal that will determine the ventral side of the embryo. This signal originates in the follicle cells during oogenesis, but its actions are only manifested after fertilization, when the egg has already been laid. We have performed a molecular analysis of windbeutel. We have found that windbeutel encodes a putative resident protein of the endoplasmic reticulum, and has homologs in rats and humans. The gene is expressed for a brief period of time in the follicle cells of the ovary, at around the time when the dorsoventral axis of the egg chamber is first established. We propose that Windbeutel is responsible for the folding and/or modification of a specific factor that is secreted from the follicle cells and participates in the activation of the ventralizing signal.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila , Drosophila/embriología , Retículo Endoplásmico/metabolismo , Proteínas de Insectos/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Tipificación del Cuerpo/fisiología , Mapeo Cromosómico , ADN Complementario , Drosophila/genética , Femenino , Humanos , Proteínas de Insectos/fisiología , Datos de Secuencia Molecular , Mutación , Oogénesis , Folículo Ovárico/citología , Folículo Ovárico/metabolismo , Fenotipo , Pliegue de Proteína , Ratas , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
17.
Development ; 124(19): 3871-80, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9367443

RESUMEN

The Drosophila gene torpedo/Egfr (top/Egfr) encodes a homolog of the vertebrate Epidermal Growth Factor receptor. This receptor is required several times during the life cycle of the fly for the transmisson of developmental cues. During oogenesis, Top/Egfr activation is required for the establishment of the dorsal/ventral axis of the egg and the embryo. To examine how ectopic Top/Egfr activation affects cell fate determination, we constructed an activated version of the protein. Expression of this activated form (lambda top) in the follicle cells of the ovary induces dorsal cell fates in both the follicular epithelium and the embryo. Different levels of expression resulted in different dorsal follicle cell fates. These dorsal cell fates were expanded in the anterior, but not the posterior, of the egg, even in cases where all the follicle cells covering the oocyte expressed lambda top. The expression of genes known to respond to top/Egfr activation, argos (aos), kekkon1 (kek 1) and rhomboid (rho), was also expanded in the presence of the lambda top construct. When lambda top was expressed in all the follicle cells covering the oocyte, kek 1 and argos expression was induced in follicle cells all along the anterior/posterior axis of the egg chamber. In contrast, rho RNA expression was only activated in the anterior of the egg chamber. These data indicate that the response to Top/Egfr signaling is regulated by an anterior/posterior prepattern in the follicle cells. Expression of lambda top in the entire follicular epithelium resulted in an embryo dorsalized along the entire anterior/posterior axis. Expression of lambda top in anterior or posterior subpopulations of follicle cells resulted in regionally autonomous dorsalization of the embryos. This result indicates that subpopulations of follicle cells along the anterior/posterior axis can respond to Top/Egfr activation independently of one another.


Asunto(s)
Proteínas de Drosophila , Drosophila/embriología , Embrión no Mamífero/fisiología , Receptores ErbB/biosíntesis , Proteínas Quinasas , Receptores de Péptidos de Invertebrados/biosíntesis , Animales , Tipificación del Cuerpo/genética , Polaridad Celular , Cruzamientos Genéticos , Dimerización , Drosophila/genética , Cáscara de Huevo/fisiología , Ojo/citología , Ojo/embriología , Ojo/ultraestructura , Femenino , Regulación del Desarrollo de la Expresión Génica , Microscopía Electrónica de Rastreo , Ovario/fisiología , Óvulo/fisiología , Vertebrados , Alas de Animales/citología , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo
18.
Development ; 124(23): 4801-10, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9428416

RESUMEN

Establishment of anterior-posterior and dorsal-ventral polarity within the Drosophila egg chamber requires signaling between the germline and the somatic cells of the ovary. The gene gurken (grk) encodes a TGFalpha-like protein that is localized within the developing oocyte and is thought to locally activate torpedo/Egfr (top/Egfr), the Drosophila homolog of the EGF receptor, which is expressed throughout the follicular epithelium surrounding the oocyte. grk-Egfr signaling is required early in oogenesis for specification of posterior follicle cell fate and later in oogenesis for dorsal follicle cell fate determination, thus establishing the axes of the egg shell and embryo. Previous studies have shown that these patterning processes are highly sensitive to changes in the levels and localization of grk mRNA. Here we show that post-transcriptional regulation of Grk protein levels is required for correct pattern formation. encore (enc), a gene that functions in the regulation of germline mitosis and maintenance of oocyte identity, is also required for the accumulation of Grk protein during oogenesis. We present evidence that enc regulates Grk post-transcriptionally to ensure adequate levels of signaling for establishment of the anterior-posterior and dorsal-ventral axes.


Asunto(s)
Proteínas de Drosophila , Drosophila/genética , Proteínas de Insectos/genética , Procesamiento Postranscripcional del ARN , Factor de Crecimiento Transformador alfa , Factores de Crecimiento Transformadores/genética , Animales , Tipificación del Cuerpo/genética , Frío , Drosophila/embriología , Embrión no Mamífero , Receptores ErbB/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/metabolismo , Mutación , Oogénesis/genética , Folículo Ovárico/fisiología , Óvulo/fisiología , Factores de Crecimiento Transformadores/metabolismo
19.
Mech Dev ; 59(2): 105-13, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8951789

RESUMEN

The establishment of anterior-posterior and dorsal-ventral polarity of the Drosophila egg and embryo depends on the function of the genes gurken, cornichon and Egfr (Drosophila epidermal growth factor receptor homolog). These genes encode components of a signal transduction pathway that transmits information between the germline cells and the somatic follicle cells of the ovary. gurken encodes a transforming growth factor-alpha-like protein and is a putative germline ligand of the Egfr present on the follicle cells. In mid-oogenesis the gurken transcript becomes spatially localized to the future dorsal-anterior cortex of the oocyte. To analyze the distribution pattern of Gurken protein we prepared antibodies against Gurken. We describe here the distribution pattern of the Gurken protein in wild-type ovaries and in ovaries from a number of dorsal-ventral patterning mutants. By immunoblotting we detect one major form of the Gurken protein, which likely corresponds to the unprocessed protein.


Asunto(s)
Proteínas de Drosophila , Proteínas de Insectos/metabolismo , Oogénesis , Factor de Crecimiento Transformador alfa/química , Factores de Crecimiento Transformadores/metabolismo , Animales , Anticuerpos , Drosophila , Femenino , Genes erbB-1/genética , Peso Molecular , Mutagénesis , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA