Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8083, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057302

RESUMEN

Plants extract mineral nutrients from the soil, or from interactions with mutualistic soil microbes via their root systems. Adapting root architecture to nutrient availability enables efficient resource utilization, particularly in patchy and dynamic environments. Root growth responses to soil nitrogen levels are shoot-mediated, but the identity of shoot-derived mobile signals regulating root growth responses has remained enigmatic. Here we show that a shoot-derived micro RNA, miR2111, systemically steers lateral root initiation and nitrogen responsiveness through its root target TML (TOO MUCH LOVE) in the legume Lotus japonicus, where miR2111 and TML were previously shown to regulate symbiotic infections with nitrogen fixing bacteria. Intriguingly, systemic control of lateral root initiation by miR2111 and TML/HOLT (HOMOLOGUE OF LEGUME TML) was conserved in the nonsymbiotic ruderal Arabidopsis thaliana, which follows a distinct ecological strategy. Thus, the miR2111-TML/HOLT regulon emerges as an essential, conserved factor in adaptive shoot control of root architecture in dicots.


Asunto(s)
Lotus , MicroARNs , Raíces de Plantas/genética , MicroARNs/genética , Lotus/microbiología , Nitrógeno , Suelo
2.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34878124

RESUMEN

Hydrophobic cell wall depositions in roots play a key role in plant development and interaction with the soil environment, as they generate barriers that regulate bidirectional nutrient flux. Techniques to label the respective polymers are emerging, but are efficient only in thin roots or sections. Moreover, simultaneous imaging of the barrier constituents lignin and suberin remains problematic owing to their similar chemical compositions. Here, we describe a staining method compatible with single- and multiphoton confocal microscopy that allows for concurrent visualization of primary cell walls and distinct secondary depositions in one workflow. This protocol permits efficient separation of suberin- and lignin-specific signals with high resolution, enabling precise dissection of barrier constituents. Our approach is compatible with imaging of fluorescent proteins, and can thus complement genetic markers or aid the dissection of barriers in biotic root interactions. We further demonstrate applicability in deep root tissues of plant models and crops across phylogenetic lineages. Our optimized toolset will significantly advance our understanding of root barrier dynamics and function, and of their role in plant interactions with the rhizospheric environment.


Asunto(s)
Pared Celular , Filogenia , Raíces de Plantas , Rizosfera , Pared Celular/genética , Pared Celular/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA