RESUMEN
Nucleic acid aptamers selected through systematic evolution of ligands by exponential enrichment (SELEX) fold into exquisite globular structures in complex with protein targets with diverse translational applications. Varying the chemistry of nucleotides allows evolution of nonnatural nucleic acids, but the extent to which exotic chemistries can be integrated into a SELEX selection to evolve nonnatural macromolecular binding interfaces is unclear. Here, we report the identification of a cubane-modified aptamer (cubamer) against the malaria biomarker Plasmodium vivax lactate dehydrogenase (PvLDH). The crystal structure of the complex reveals an unprecedented binding mechanism involving a multicubane cluster within a hydrophobic pocket. The binding interaction is further stabilized through hydrogen bonding via cubyl hydrogens, previously unobserved in macromolecular binding interfaces. This binding mechanism allows discriminatory recognition of P. vivax over Plasmodium falciparum lactate dehydrogenase, thereby distinguishing these highly conserved malaria biomarkers for diagnostic applications. Together, our data demonstrate that SELEX can be used to evolve exotic nucleic acids bearing chemical functional groups which enable remarkable binding mechanisms which have never been observed in biology. Extending to other exotic chemistries will open a myriad of possibilities for functional nucleic acids.
Asunto(s)
Aptámeros de Nucleótidos/química , L-Lactato Deshidrogenasa/química , Malaria/diagnóstico , Proteínas Protozoarias/química , Biomarcadores/sangre , Biomarcadores/química , Humanos , Enlace de Hidrógeno , L-Lactato Deshidrogenasa/sangre , Malaria/sangre , Técnicas de Diagnóstico Molecular/métodos , Simulación de Dinámica Molecular , Plasmodium vivax/enzimología , Unión ProteicaRESUMEN
The cubane phenyl ring bioisostere paradigm was further explored in an extensive study covering a wide range of pharmaceutical and agrochemical templates, which included antibiotics (cefaclor, penicillin G) and antihistamine (diphenhydramine), a smooth muscle relaxant (alverine), an anaesthetic (ketamine), an agrochemical instecticide (triflumuron), an antiparasitic (benznidazole) and an anticancer agent (tamibarotene). This investigation highlights the scope and limitations of incorporating cubane into bioactive molecule discovery, both in terms of synthetic compatibility and physical property matching. Cubane maintained bioisosterism in the case of the Chagas disease antiparasitic benznidazole, although it was less active in the case of the anticancer agent (tamibarotenne). Application of the cyclooctatetraene (COT) (bio)motif complement was found to optimize benznidazole relative to the benzene parent, and augmented anticancer activity relative to the cubane analogue in the case of tamibarotene. Like all bioisosteres, scaffolds and biomotifs, however, there are limitations (e.g. synthetic implementation), and these have been specifically highlighted herein using failed examples. A summary of all templates prepared to date by our group that were biologically evaluated strongly supports the concept that cubane is a valuable tool in bioactive molecule discovery and COT is a viable complement.
Asunto(s)
Benceno/química , Ciclooctanos/química , Nitroimidazoles/química , Antineoplásicos/química , Benzoatos/química , Estructura Molecular , Tetrahidronaftalenos/químicaRESUMEN
Cubane was recently validated as a phenyl ring (bio)isostere, but highly strained caged carbocyclic systems lack π character, which is often critical for mediating key biological interactions. This electronic property restriction associated with cubane has been addressed herein with cyclooctatetraene (COT), using known pharmaceutical and agrochemical compounds as templates. COT either outperformed or matched cubane in multiple cases suggesting that versatile complementarity exists between the two systems for enhanced bioactive molecule discovery.
RESUMEN
The scope and limitations of Eaton's rhodium(I)-catalyzed valence isomerization of cubane to cyclooctatetraene (COT) were investigated in the context of functional group tolerability, multiple substitution modes and the ability of cubane-alcohols to undergo one-pot tandem Ley-Griffith Wittig reactions in the absence of a transition metal catalyst.
RESUMEN
The first enantioselective synthesis of (R)-2-cubylglycine, an analogue of (R)-2-phenylglycine in which the phenyl ring has been replaced by cubane, is disclosed. The key step was a telescoped Strecker reaction using (S)-2-amino-2-phenylethanol as a chiral auxiliary. Exploration of an alternative synthetic approach resulted in unprecedented cubane C-H insertion.
RESUMEN
Pharmaceutical and agrochemical discovery programs are under considerable pressure to meet increasing global demand and thus require constant innovation. Classical hydrocarbon scaffolds have long assisted in bringing new molecules to the market place, but an obvious omission is that of the Platonic solid cubane. Eaton, however, suggested that this molecule has the potential to act as a benzene bioisostere. Herein, we report the validation of Eaton's hypothesis with cubane derivatives of five molecules that are used clinically or as agrochemicals. Two cubane analogues showed increased bioactivity compared to their benzene counterparts whereas two further analogues displayed equal bioactivity, and the fifth one demonstrated only partial efficacy. Ramifications from this study are best realized by reflecting on the number of bioactive molecules that contain a benzene ring. Substitution with the cubane scaffold where possible could revitalize these systems, and thus expedite much needed lead candidate identification.
Asunto(s)
Benceno/química , Anciano , Animales , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCIDAsunto(s)
Hidrocarburos Aromáticos con Puentes , Química Orgánica/historia , Animales , Antivirales/química , Antivirales/farmacología , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/historia , Hidrocarburos Aromáticos con Puentes/farmacología , Química Farmacéutica , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/farmacología , ProfármacosRESUMEN
Recently, a novel chiral cubane-based Schiff base ligand was reported to yield modest enantioselectivity in the Henry reaction. To further explore the utility of this ligand in other asymmetric organic transformations, we evaluated its stereoselectivity in cyclopropanation and Michael addition reactions. Although there was no increase in stereocontrol, upon computational evaluation using both M06L and B3LYP calculations, it was revealed that a pseudo six-membered ring exists, through H-bonding of a cubyl hydrogen to the copper core. This decreases the steric bulk above the copper center and limits the asymmetric control with this ligand.