Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechnol Biofuels Bioprod ; 17(1): 103, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020434

RESUMEN

BACKGROUND: Itaconic acid is a promising bio-based building block for the synthesis of polymers, plastics, fibers and other materials. In recent years, Ustilago cynodontis has emerged as an additional itaconate producing non-conventional yeast, mainly due to its high acid tolerance, which significantly reduces saline waste coproduction during fermentation and downstream processing. As a result, this could likely improve the economic viability of the itaconic acid production process with Ustilaginaceae. RESULTS: In this study, we characterized a previously engineered itaconate hyper-producing Ustilago cynodontis strain in controlled fed-batch fermentations to determine the minimal and optimal pH for itaconate production. Under optimal fermentation conditions, the hyper-producing strain can achieve the theoretical maximal itaconate yield during the production phase in a fermentation at pH 3.6, but at the expense of considerable base addition. Base consumption is strongly reduced at the pH of 2.8, but at cost of production yield, titer, and rate. A techno-economic analysis based on the entire process demonstrated that savings due to an additional decrease in pH control reagents and saline waste costs cannot compensate the yield loss observed at the highly acidic pH value 2.8. CONCLUSIONS: Overall, this work provides novel data regarding the balancing of yield, titer, and rate in the context of pH, thereby contributing to a better understanding of the itaconic acid production process with Ustilago cynodontis, especially from an economic perspective.

2.
Bioengineering (Basel) ; 10(6)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37370654

RESUMEN

Bio-based bulk chemicals such as carboxylic acids continue to struggle to compete with their fossil counterparts on an economic basis. One possibility to improve the economic feasibility is the use of crude substrates in biorefineries. However, impurities in these substrates pose challenges in fermentation and purification, requiring interdisciplinary research. This work demonstrates a holistic approach to biorefinery process development, using itaconic acid production on thick juice based on sugar beets with Ustilago sp. as an example. A conceptual process design with data from artificially prepared solutions and literature data from fermentation on glucose guides the simultaneous development of the upstream and downstream processes up to a 100 L scale. Techno-economic analysis reveals substrate consumption as the main constituent of production costs and therefore, the product yield is the driver of process economics. Aligning pH-adjusting agents in the fermentation and the downstream process is a central lever for product recovery. Experiments show that fermentation can be transferred from glucose to thick juice by changing the feeding profile. In downstream processing, an additional decolorization step is necessary to remove impurities accompanying the crude substrate. Moreover, we observe an increased use of pH-adjusting agents compared to process simulations.

3.
Appl Microbiol Biotechnol ; 103(12): 4741-4752, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31020382

RESUMEN

Liamocins are biosurfactants produced by the fungus Aureobasidium pullulans. A. pullulans belongs to the black yeasts and is known for its ability to produce pullulan and melanin. However, the production of liamocins has not been investigated intensively. Initially, HPLC methods for the quantification of liamocin and the identification of liamocin congeners were established. Eleven congeners could be detected, differing in the polyol head groups arabitol or mannitol. In addition, headless molecules, so-called exophilins, were also identified. The HPLC method reported here allows quick and reliable quantification of all identified congeners, an often-overlooked prerequisite for the investigation of valuable product formation. Liamocin synthesis was optimized during cultivation in lab-scale fermenters. While the pH can be kept constant, the best strategy for liamocin synthesis consists of a growth phase at neutral pH and a subsequent production phase induced by a manual pH shift to pH 3.5. Finally, combining increased nitrogen availability with a pulsed fed-batch fermentation, cell growth, and liamocin titers could be enhanced. Here, the maximal titers of above 10 g/L that were reached are the highest reported to date for liamocin synthesis using A. pullulans in lab-scale fermenters.


Asunto(s)
Ascomicetos/metabolismo , Medios de Cultivo/química , Fermentación , Manitol/análogos & derivados , Aceites/metabolismo , Tensoactivos/metabolismo , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Concentración de Iones de Hidrógeno , Microbiología Industrial , Manitol/metabolismo , Nitrógeno/metabolismo , Alcoholes del Azúcar/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA