RESUMEN
Genomic selection has been proposed for the mitigation of methane (CH4) emissions by cattle because there is considerable variability in CH4 emissions between individuals fed on the same diet. The genome-wide association study (GWAS) represents an important tool for the detection of candidate genes, haplotypes or single nucleotide polymorphisms (SNP) markers related to characteristics of economic interest. The present study included information for 280 cows in three dairy production systems in Mexico: 1) Dual Purpose (n = 100), 2) Specialized Tropical Dairy (n = 76), 3) Familiar Production System (n = 104). Concentrations of CH4 in a breath of individual cows at the time of milking (MEIm) were estimated through a system of infrared sensors. After quality control analyses, 21,958 SNPs were included. Associations of markers were made using a linear regression model, corrected with principal component analyses. In total, 46 SNPs were identified as significant for CH4 production. Several SNPs associated with CH4 production were found at regions previously described for quantitative trait loci of composition characteristics of meat, milk fatty acids and characteristics related to feed intake. It was concluded that the SNPs identified could be used in genomic selection programs in developing countries and combined with other datasets for global selection.
Asunto(s)
Alimentación Animal , Bovinos/genética , Metano/metabolismo , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Animales , Marcadores Genéticos , Estudio de Asociación del Genoma CompletoRESUMEN
The predicted amino acid sequence was determined for the class-1 outer membrane protein, PorA, from a B:15:P1.7,3 strain of Neisseria meningitidis that is currently causing an epidemic of meningitis in Northern Chile. The P1.7,3 PorA showed a unique sequence in the exposed loop 4 of the putative porin structure that is different from all the reported PorA sequences. Based on the nucleotide (nt) sequence of the P1.7,3 porA, we designed two sets of PCR (polymerase chain reaction) primers that specifically amplified porA from any N. meningitidis strain, and a third set of primers that amplified porA only from the P1.7,3 strain. Using these primers, we developed a sensitive double hot-start nested PCR (HNPCR) strategy that could amplify porA and generate nt sequence from as low as a single colony-forming unit. This strategy consisted of three phases of PCR. The first two phases were designed to generate amplified target DNA that could be directly visualized by ethidium bromide staining starting from one to two molecules of Neisseria genome. The third phase was designed to generate a sequence of several hundred nt directly from the amplified DNA. A number of culture-negative cerebrospinal fluid samples from individuals suspected of meningitis during a vaccine trial were analyzed by this strategy to obtain more accurate information on the actual number of cases that occurred in the study and the non-study populations. The basic HNPCR strategy described here could be applied to amplify and sequence target DNAs from any low-copy-number biological sample.
Asunto(s)
Neisseria meningitidis/genética , Reacción en Cadena de la Polimerasa/métodos , Porinas/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Aminoácidos , Secuencia de Bases , Chile/epidemiología , Cartilla de ADN , ADN Bacteriano , Humanos , Infecciones Meningocócicas/líquido cefalorraquídeo , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/microbiología , Datos de Secuencia MolecularRESUMEN
Two molecular forms of gonadotropin-releasing hormone (GnRH) were demonstrated in hypothalamic extracts of M. domestica using high performance liquid chromatography and radioimmunoassay with specific GnRH antisera. One form eluted in the same position as synthetic mammalian GnRH and was quantified equally by two mammalian GnRH antisera, while the second form coeluted with synthetic chicken GnRH II and was quantified equally with two chicken GnRH II antisera. The finding of chicken GnRH II in a South American species of marsupial, which has previously been reported in some Australian species of marsupial and in species of Aves, Reptilia, Amphibia, Osteichthyes and Chondrichthyes, supports our hypothesis that this widespread structural variant may represent an early evolved and conserved form of GnRH.