Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 614: 511-521, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35121509

RESUMEN

HYPOTHESIS: Surfactant-driven Marangoni spreading generates a fluid flow characterized by an outwardly moving "Marangoni ridge". Spreading on thin and/or high viscosity subphases, as most of the prior literature emphasizes, does not allow the formation of capillary waves. On deep, low viscosity subphases, Marangoni stresses may launch capillary waves coupled with the Marangoni ridge, and new dependencies emerge for key spreading characteristics on surfactant thermodynamic and kinetic properties. EXPERIMENTS AND MODELING: Computational and physical experiments were performed using a broad range of surfactants to report the post-deposition motion of the surfactant front and the deformation of the subphase surface. Modeling coupled the Navier-Stokes and advective diffusion equations with an adsorption model. Separate experiments employed tracer particles or an optical density method to track surfactant front motion or surface deformation, respectively. FINDINGS: Marangoni stresses on thick subphases induce capillary waves, the slowest of which is co-mingled with the Marangoni ridge. Changing Marangoni stresses by varying the surfactant system alters the surfactant front velocity and the amplitude - but not the velocity - of the slowest capillary wave. As spreading progresses, the surfactant front and its associated surface deformation separate from the slowest moving capillary wave.


Asunto(s)
Surfactantes Pulmonares , Tensoactivos , Adsorción , Difusión , Excipientes
2.
Langmuir ; 37(11): 3309-3320, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33689367

RESUMEN

When an insoluble surfactant is deposited on the surface of a thin fluid film, stresses induced by surface tension gradients drive Marangoni spreading across the subphase surface. The presence of a predeposited layer of an insoluble surfactant alters that spreading. In this study, the fluid film was aqueous, the predeposited insoluble surfactant was dipalmitoylphosphatidylcholine (DPPC), and the deposited insoluble surfactant was oleic acid. An optical density-based method was used to measure subphase surface distortion, called the Marangoni ridge, associated with propagation of the spreading front. The movement of the Marangoni ridge was correlated with movement of surface tracer particles that indicated both the boundary between the two surfactant layers and the surface fluid velocities. As the deposited oleic acid monolayer spread, it compressed the predeposited DPPC monolayer. During spreading, the surface tension gradient extended into the predeposited monolayer, which was compressed nonuniformly, from the deposited monolayer. The spreading was so rapid that the compressed predeposited surfactant could not have been in quasi-equilibrium states during the spreading. As the initial concentrations of the predeposited surfactant were increased, the shape of the Marangoni ridge deformed. When the initial concentration of the predeposited surfactant reached about 70 A2/molecule, there was no longer a Marangoni ridge but rather a broadly distributed excess of fluid above the initial fluid height. The nonuniform compression of the annulus of the predeposited monolayer also caused tangential motion ahead of both the Marangoni ridge and the boundary between the two monolayers. Spreading ceased when the two monolayers reached the same final surface tension. The final area per molecule of the DPPC monolayer matched that expected from the equilibrium DPPC isotherm at the same final surface tension. Thus, at the end of spreading, there was a simple surface tension balance between the two distinct monolayers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA