Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235131

RESUMEN

The quantification of low-abundance secondary metabolites in plant extracts is an analytical problem that can be addressed by different analytical platforms, the most common being those based on chromatographic methods coupled to a high-sensitivity detection system. However, in recent years nuclear magnetic resonance (NMR) has become an analytical tool of primary choice for this type of problem because of its reliability, inherent simplicity in sample preparation, reduced analysis time, and low solvent consumption. The versatility of strategies based on quantitative NMR (qNMR), such as internal and external standards and electronic references, among others, and the need to develop validated analytical methods make it essential to compare procedures that must rigorously satisfy the analytical well-established acceptance criteria for method validation. In this work, two qNMR methods were developed for the quantification of hepatodamianol, a bioactive component of T. diffusa. The first method was based on a conventional external standard calibration, and the second one was based on the pulse length-based concentration determination (PULCON) method using the ERETIC2 module as a quantitation tool available in TopSpin software. The results show that both procedures allow the content of the analyte of interest in a complex matrix to be determined in a satisfactory way, under strict analytical criteria. In addition, ERETIC2 offers additional advantages such as a reduction in experimental time, reagent consumption, and waste generated.


Asunto(s)
Productos Biológicos , Turnera , Objetivos , Espectroscopía de Resonancia Magnética/métodos , Extractos Vegetales/química , Reproducibilidad de los Resultados , Solventes
2.
Artículo en Inglés | MEDLINE | ID: mdl-35047045

RESUMEN

The incidence of liver diseases, such as nonalcoholic fatty liver disease and drug-induced liver injury, continues to rise and is one of the leading causes of acute hepatitis. Current trends suggest that these types of conditions will increase in the coming years. There are few drugs available for the prevention or treatment of hepatic diseases, and there is a growing need for the development of safe hepatoprotective agents. The medicinal plant, Turnera diffusa, has many ethnopharmacological uses, one of which is the production of a flavonoid named hepatodamianol, which is the principal component responsible for this plant's hepatoprotective properties. In the present study, we describe the development and standardization of an active extract obtained from T. diffusa. We conducted nuclear magnetic resonance spectroscopy to identify hepatodamianol unambiguously in each sample. Using this extract, hepatoprotection could be demonstrated in vivo for the first time. The hepatoprotective effect did not display a significant difference in vivo when compared with silymarin used as a positive control at the same doses. Implementation of quality criteria used for standardization, such as flavonoid and hepatodamianol content, hepatoprotective activity, and absence of residual solvents, will allow future preclinical trials with this herbal drug.

3.
PeerJ ; 9: e12426, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34824916

RESUMEN

BACKGROUND: Ischemia-reperfusion (IR) injury is one of the leading causes of early graft dysfunction in liver transplantation. Techniques such as ischemic preconditioning protect the graft through the activation of the hypoxia-inducible factors (HIF), which are downregulated by the EGLN family of prolyl-4-hydroxylases, a potential biological target for the development of strategies based on pharmacological preconditioning. For that reason, this study aims to evaluate the effect of the EGLN inhibitor sodium (S)-2-hydroxyglutarate [(S)-2HG] on liver IR injury in Wistar rats. METHODS: Twenty-eight female Wistar rats were divided into the following groups: sham (SH, n = 7), non-toxicity (HGTox, n = 7, 25 mg/kg of (S)-2HG, twice per day for two days), IR (n = 7, total liver ischemia: 20 minutes, reperfusion: 60 minutes), and (S)-2HG+IR (HGIR, n = 7, 25 mg/kg of (S)-2HG, twice per day for two days, total liver ischemia as the IR group). Serum ALT, AST, LDH, ALP, glucose, and total bilirubin were assessed. The concentrations of IL-1ß, IL-6, TNF, malondialdehyde, superoxide dismutase, and glutathione peroxidase were measured in liver tissue, as well as the expression of Hmox1, Vegfa, and Pdk1, determined by RT-qPCR. Sections of liver tissue were evaluated histologically, assessing the severity of necrosis, sinusoidal congestion, and cytoplasmatic vacuolization. RESULTS: The administration of (S)-2HG did not cause any alteration in the assessed biochemical markers compared to SH. Preconditioning with (S)-2HG significantly ameliorated IR injury in the HGIR group, decreasing the serum activities of ALT, AST, and LDH, and the tissue concentrations of IL-1ß and IL-6 compared to the IR group. IR injury decreased serum glucose compared to SH. There were no differences in the other biomarkers assessed. The treatment with (S)-2HG tended to decrease the severity of hepatocyte necrosis and sinusoidal congestion compared to the IR group. The administration of (S)-2HG did not affect the expression of Hmox1 but decreased the expression of both Vegfa and Pdk1 compared to the SH group, suggesting that the HIF-1 pathway is not involved in its mechanism of hepatoprotection. In conclusion, (S)-2HG showed a hepatoprotective effect, decreasing the levels of liver injury and inflammation biomarkers, without evidence of the involvement of the HIF-1 pathway. No hepatotoxic effect was observed at the tested dose.

4.
PeerJ ; 8: e9438, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32728491

RESUMEN

BACKGROUND: Ischemia-reperfusion (IR) injury is the main cause of delayed graft function in solid organ transplantation. Hypoxia-inducible factors (HIFs) control the expression of genes related to preconditioning against IR injury. During normoxia, HIF-α subunits are marked for degradation by the egg-laying defective nine homolog (EGLN) family of prolyl-4-hydroxylases. The inhibition of EGLN stabilizes HIFs and protects against IR injury. The aim of this study was to determine whether the EGLN inhibitors sodium (S)-2-hydroxyglutarate [(S)-2HG] and succinic acid (SA) have a nephroprotective effect against renal IR injury in Wistar rats. METHODS: (S)-2HG was synthesized in a 22.96% yield from commercially available L-glutamic acid in a two-step methodology (diazotization/alkaline hydrolysis), and its structure was confirmed by nuclear magnetic resonance and polarimetry. SA was acquired commercially. (S)-2HG and SA were independently evaluated in male and female Wistar rats respectively after renal IR injury. Rats were divided into the following groups: sham (SH), nontoxicity [(S)-2HG: 12.5 or 25 mg/kg; SA: 12.5, 25, or 50 mg/kg], IR, and compound+IR [(S)-2HG: 12.5 or 25 mg/kg; SA: 12.5, 25, or 50 mg/kg]; independent SH and IR groups were used for each assessed compound. Markers of kidney injury (BUN, creatinine, glucose, and uric acid) and liver function (ALT, AST, ALP, LDH, serum proteins, and albumin), proinflammatory cytokines (IL-1ß, IL-6, and TNF-α), oxidative stress biomarkers (malondialdehyde and superoxide dismutase), and histological parameters (tubular necrosis, acidophilic casts, and vascular congestion) were assessed. Tissue HIF-1α was measured by ELISA and Western blot, and the expression of Hmox1 was assessed by RT-qPCR. RESULTS: (S)-2HG had a dose-dependent nephroprotective effect, as evidenced by a significant reduction in the changes in the BUN, creatinine, ALP, AST, and LDH levels compared with the IR group. Tissue HIF-1α was only increased in the IR group compared to SH; however, (S)-2HG caused a significant increase in the expression of Hmox1, suggesting an early accumulation of HIF-1α in the (S)-2HG-treated groups. There were no significant effects on the other biomarkers. SA did not show a nephroprotective effect; the only changes were a decrease in creatinine level at 12.5 mg/kg and increased IR injury at 50 mg/kg. There were no effects on the other biochemical, proinflammatory, or oxidative stress biomarkers. CONCLUSION: None of the compounds were hepatotoxic at the tested doses. (S)-2HG showed a dose-dependent nephroprotective effect at the evaluated doses, which involved an increase in the expression of Hmox1, suggesting stabilization of HIF-1α. SA did not show a nephroprotective effect but tended to increase IR injury when given at high doses.

5.
PeerJ ; 7: e7113, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275747

RESUMEN

BACKGROUND: Renal diseases represent a major public health problem. The demonstration that maladaptive repair of acute kidney injury (AKI) can lead to the development of chronic kidney disease (CKD) and end-stage renal disease has generated interest in studying the pathophysiological pathways involved. Animal models of AKI-CKD transition represent important tools to study this pathology. We hypothesized that the administration of multiple doses of folic acid (FA) would lead to a progressive loss of renal function that could be characterized through biochemical parameters, histological classification and nuclear magnetic resonance (NMR) profiling. METHODS: Wistar rats were divided into groups: the control group received a daily intraperitoneal (I.P.) injection of double-distilled water, the experimental group received a daily I.P. injection of FA (250 mg kg body weight-1). Disease was classified according to blood urea nitrogen level: mild (40-80 mg dL-1), moderate (100-200 mg dL-1) and severe (>200 mg dL-1). We analyzed through biochemical parameters, histological classification and NMR profiling. RESULTS: Biochemical markers, pro-inflammatory cytokines and kidney injury biomarkers differed significantly (P < 0.05) between control and experimental groups. Histology revealed that as damage progressed, the degree of tubular injury increased, and the inflammatory infiltrate was more evident. NMR metabolomics and chemometrics revealed differences in urinary metabolites associated with CKD progression. The main physiological pathways affected were those involved in energy production and amino-acid metabolism, together with organic osmolytes. These data suggest that multiple administrations of FA induce a reproducible model of the induction of CKD. This model could help to evaluate new strategies for nephroprotection that could be applied in the clinic.

6.
Curr Med Chem ; 25(31): 3719-3747, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29521201

RESUMEN

Chronic kidney disease (CKD) is a progressive condition characterized by a permanent and irreversible loss of renal function. In accordance to international guidelines, CKD clinical diagnosis methods are based on creatinine and albumin levels and glomerular filtration rate. Unfortunately, these parameters are scarcely affected in early stages, and its inherent intrinsic variability only allows for the identification of intermediate and advanced stages, when life expectancy has become shorter and treatment poses a significant financial investment. In this context, several targeted strategies have been designed for searching novel markers. Among them, "omics" techniques have emerged, mainly based on proteomics and metabolomics research. Urine and serum samples have been selected as starting material to conduct the identification of new CKD biomarkers, capable of differentiating between stages and predicting progression outcomes. In many cases, the principal objective is to develop a fast and reliable clinical method for non-invasive analysis in the early progression stages of the disease. On the other hand, significant efforts have been directed to identify molecules related to the CKD end stage in order to adequate therapies, reduce impairments, and have a positive impact on survival rate. In this article, the state of the art of novel proposed biomarkers for CKD identification is reviewed, with the aim of underlining its molecular diversity, emphasizing chemical structure differences and correlating its biological relevance. Efforts directed in this line could provide evidence of metabolic pathways imbalance, and lead to the development of new integral strategies for CKD evaluation and management.


Asunto(s)
Biomarcadores/metabolismo , Insuficiencia Renal Crónica/diagnóstico , Aminoácidos/sangre , Aminoácidos/metabolismo , Aminoácidos/orina , Animales , Biomarcadores/sangre , Biomarcadores/orina , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Pronóstico , Proteínas/análisis , Proteínas/metabolismo , Insuficiencia Renal Crónica/fisiopatología
7.
Biochim Biophys Acta ; 1824(3): 478-87, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22251893

RESUMEN

The three-dimensional structures of the long-chain mammalian scorpion ß-toxin CssII from Centruroides suffusus suffusus and of its recombinant form, HisrCssII, were determined by NMR. The neurotoxin CssII (nCssII) is a 66 amino acid long peptide with four disulfide bridges; it is the most abundant and deadly toxin from the venom of this scorpion. Both native and recombinant CssII structures were determined by nuclear magnetic resonance using a total of 828 sequential distance constraints derived from the volume integration of the cross peaks observed in 2D NOESY spectra. Both nCssII and HisrCssII structures display a mixed α/ß fold stabilized by four disulfide bridges formed between pairs of cysteines: C1-C8, C2-C5, C3-C6, and C4-C7 (the numbers indicate the relative positions of the cysteine residues in the primary structure), with a distortion induced by two cis-prolines in its C-terminal part. The native CssII electrostatic surface was compared to both the recombinant one and to the Cn2 toxin, from the scorpion Centruroides noxius, which is also toxic to mammals. Structural features such N- and C-terminal differences could influence toxin specificity and affinity towards isoforms of different sub-types of Na(v) channels.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.5/química , Neurotoxinas/química , Venenos de Escorpión/química , Escorpiones/química , Potenciales de Acción/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cisteína/química , Disulfuros , Escherichia coli/genética , Humanos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Neurotoxinas/genética , Neurotoxinas/aislamiento & purificación , Neurotoxinas/toxicidad , Técnicas de Placa-Clamp , Prolina/química , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/toxicidad , Venenos de Escorpión/genética , Venenos de Escorpión/aislamiento & purificación , Venenos de Escorpión/toxicidad , Escorpiones/patogenicidad , Soluciones , Electricidad Estática , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA