RESUMEN
Among the strategies for bioavailability improvement of poorly soluble drugs, co-amorphous systems have revealed to have a significant impact in the increase of the aqueous solubility of the drug, and at the same time increasing the amorphous state stability and dissolution rate when compared with the neat drug. Tolbutamide (TBM) is an oral hypoglycemic drug largely used in the treatment of type II Mellitus diabetes. TBM is a class II drug according to the Biopharmaceutical Classification System, meaning that it has low solubility and higher permeability. The aim of this study was to synthesize a co-amorphous material of tolbutamide (TBM) with tromethamine (TRIS). Density functional theory (DFT), allowed to study the structural, electronic, and thermodynamic properties, as well as solvation effects. In same theory level, several interactions tests were performed to obtain the most thermodynamically favorable drug-coformer intermolecular interactions. The vibrational spectra (mid infrared and Raman spectroscopy) are in accordance with the theoretical studies, showing that the main molecular interactions are due to the carbonyl, sulfonyl, and amide groups of TMB and the alcohol and amine groups of TRIS. X-ray powder diffraction was used to study the physical stability in dry condition at 25 °C of the co-amorphous system, indicating that the material remained in an amorphous state up to 90 days. Differential scanning calorimetry and thermogravimetric results showed a high increase of the Tg when compared with the amorphous neat drug, from 4.3 °C to 83.7 °C, which generally translated into good physical stability. Solubility studies demonstrated an increase in the solubility of TBM by 2.5 fold when compared with its crystalline counterpart.
Asunto(s)
Diabetes Mellitus , Tolbutamida , Rastreo Diferencial de Calorimetría , Sistemas de Liberación de Medicamentos , Estabilidad de Medicamentos , Humanos , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos XRESUMEN
A cocrystal of glibenclamide, an antidiabetic drug classified as type II compound according to the Biopharmaceutics Classification System, has been synthesized using tromethamine as coformer in 1:1 molar ratio, by slow solvent evaporation cocrystalization. The cocrystal obtained was characterized by X-ray powder diffraction, differential scanning calorimetry, Raman, mid infrared, and near-infrared spectroscopy. The results consistently show the formation of a cocrystal between active pharmaceutical ingredients and conformer with the synthons corresponding to hydrogen bonding between hydrogen in amines of tromethamine and carbonyl and sulfonyl groups in glibenclamide.