Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39195365

RESUMEN

Bergenia ciliata (BC) is a perennial herb that is frequently used as a traditional medicine. Its leaves and rhizomes are reported to have significant antioxidant, metal-reducing, and chelating properties. Although the rhizomes have the potential to synthesize silver nanoparticles (AgNPs), the leaves are yet to be studied for the green synthesis of metal nanoparticles. Likewise, photoirradiation also plays a significant role in the green synthesis of metal nanoparticles. In the current study, we intended to demonstrate the implications of photoirradiation by white light-emitting diode (LED) on the aqueous and methanol extracts (AE and ME, respectively) of BC leaf-mediated green synthesis of AgNPs. In this regard, the AgNP synthesis of the two extracts was performed in the dark and under 250-lumen (lm) and 825 lm LED bulbs. The physicochemical characterization of the synthesized nanoparticles was also performed, wherein percent nanoparticles yield, morphology of the nanoparticles, shape, size, percent elemental composition, crystallinity, and nanoparticle stability were studied. The nanoparticle-synthesizing potential of the two extracts contradicted significantly in the presence and absence of light, while the AE produced a significantly high number of nanoparticles in the dark (17.26%), and increasing light intensities only attenuated the nanoparticle synthesis, whereas ME synthesized comparatively negligible silver nanoparticles in the dark (1.23%). However, increasing light intensities significantly enhanced the number of nanoparticles synthesized in 825 lms (7.41%). The GCMS analysis further gave a comparative insight into the phytochemical composition of both extracts, wherein catechol and pyrogallol were identified as major reducing agents for nanoparticle synthesis. The influence of light intensities on the physiochemical characterization of AgNPs was predominant. While the size of both the AE- and ME-mediated AgNPs increased considerably (20-50 nm diameter) with increasing light intensities, the percent of silver atoms decreased significantly with increasing light intensities in both the AE- and ME-mediated AgNPs with ranges of 13-18% and 14-24%, respectively. The nanoparticle stability studies suggested that both the AE- and ME-mediated AgNPs were stable for up to 15 days when stored at 4 °C. The stability of both nanoparticles was attributed to the presence of a wide range of phytochemicals. In conclusion, the AE of BC leaves was reported to have significantly higher AgNP-synthesizing potential as compared to the ME. However, AE-mediated AgNP synthesis is attenuated by photoirradiation, whereas ME-mediated AgNP synthesis is enhanced by photoirradiation. The photoirradiation by white LED light increases the size of the AgNPs, while the percent silver composition declines, irrespective of the extract type. Both extracts, however, have nanoparticle stabilizing potential, thereby producing stable nanoparticles.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124005, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341932

RESUMEN

In the present study, we have synthesized an aminobenzoic acid containing Schiff base (compound 1) and its structure was confirmed through single crystal X-ray study. Importantly, the compound 1 crystallizes in the zwitterionic form, with an anionic carboxylate group (-COO-) and a cationic iminium group (-C = NH+-). The compound 1 is highly soluble in water due to its zwitterionic feature in the solid state. Interestingly, compound 1 acts as a ratiometric fluorescent probe for the selective detection of Al3+ ion in aqueous solution without organic cosolvent. It can also detect Al3+ ion by visual colour change to bluish-green fluorescence under 365 nm UV light. The association constant between compound 1 with Al3+ ion was estimated to be 1.67 × 104 M-1. The lowest detection limit for Al3+ ion was calculated to be 7.05 × 10-8 M in water. Compound 1 in combination with Al3+ ion demonstrated fluorescent imaging potential of the nucleus of in RAW 264.7 murine macrophage cell line. In addition, the sensing model is developed as paper based sensor ''Test Kit' 'for its practical applicability.


Asunto(s)
Aluminio , Agua , Animales , Ratones , Aluminio/química , Espectrometría de Fluorescencia/métodos , Agua/química , Colorantes Fluorescentes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA