Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta Open ; 6: 100155, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36212546

RESUMEN

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a cause of worldwide Coronavirus 2019 (COVID-19) disease pandemic. It is thus important to develop ultra-sensitive, rapid and easy-to-use methods for the identification of COVID-19 infected patients. Herein, an alternative electrochemical immunosensor based on poly(pyrrolepropionic acid) (pPPA) modified graphene screen-printed electrode (GSPE) was proposed for rapid COVID-19 detection. The method was based on a competitive enzyme immunoassay process utilizing horseradish peroxidase (HRP)-conjugated SARS-CoV-2 as a reporter binding molecule to compete binding with antibody against the SARS-CoV-2 receptor binding domain (SARS-CoV-2 RBD) protein. This strategy enhanced the current signal via the enzymatic reaction of HRP-conjugated SARS-CoV-2 RBD antibody on the electrode surface. The modification, immobilization, blocking, and detection processes were optimized and evaluated by amperometry. The quantitative analysis of SARS-CoV-2 was conducted based on competitive enzyme immunoassay with amperometric detection using a 3D-printed portable potentiostat for point-of-care COVID-19 diagnosis. The current measurements at -0.2 V yielded a calibration curve with a linear range of 0.01-1500 ng mL-1 (r2 = 0.983), a low detection limit of 2 pg mL-1 and a low quantification limit of 10 pg mL-1. In addition, the analyzed results of practical samples using the developed method were successfully verified with ELISA and RT-PCR. Therefore, the proposed portable electrochemical immunosensor is highly sensitive, rapid, and reliable. Thus, it is an alternative ready-to-use sensor for COVID-19 point-of-care diagnosis.

2.
J Pharm Biomed Anal ; 186: 113333, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32402994

RESUMEN

Tuberculosis (TB) is one of the most contagious and lethal infectious diseases that affects more than 10 million individuals worldwide. A lack of rapid TB diagnosis is partly responsible for its alarming spread and prevalence in many regions. To address this problem, we report a novel integrated point-of-care platform to detect a TB-causative bacterium, Mycobacterium tuberculosis (Mtb). This leverages loop-mediated isothermal amplification (LAMP) for Mtb-DNA amplification and the screen-printed graphene electrode (SPGE) for label-free electrochemical analysis of DNA amplicons. When implemented on a portable potentiostat device developed in-house, the system (LAMP-EC) offers a rapid end-point qualitative analysis of specific DNA amplicons that will be displayed as a discrete positive/negative readout on the LCD screen. Under optimized conditions, LAMP-EC showed a comparable detection limit to the previously developed LAMP assay with a lateral flow readout at 1 pg total DNA or 40 Mtb genome equivalents. This highly specific technique detected the presence of TB in all 104 blinded sputum samples with a 100% accuracy. Our technique can also easily be clinically adopted due to its affordability (∼USD2.5/test), rapidity (<65 min turnaround time) and feasibility (lack of advanced instrumental requirement). This serves as a practical incentive, appealing to users in both high- and low-resource settings across the TB endemic regions and economic backgrounds.


Asunto(s)
Técnicas Electroquímicas/métodos , Mycobacterium tuberculosis/aislamiento & purificación , Sistemas de Atención de Punto , Tuberculosis/diagnóstico , ADN Bacteriano/análisis , Electrodos , Grafito/química , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Tuberculosis/microbiología
3.
Biosens Bioelectron ; 132: 271-278, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30878727

RESUMEN

Vibrio parahaemolyticus is one of the most important foodborne pathogens that cause various life-threatening diseases in human and animals. Here, we present a rapid detection platform for V. parahaemolyticus by combining loop-mediated isothermal amplification (LAMP) and disposable electrochemical sensors based on screen-printed graphene electrodes (SPGEs). The LAMP reactions using primers targeting V. parahaemolyticus toxR gene were optimized at an isothermal temperature of 65 °C, providing specific detection of V. parahaemolyticus within 45 min at the detection limit of 0.3 CFU per 25 g of raw seafood. The LAMP amplicons can be effectively detected using unmodified SPGEs, redox active molecules namely Hoechst-33258 and a portable potentiostat. Therefore, the proposed system is particularly suitable as a point-of-care device for on-site detection of foodborne pathogens.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Análisis de los Alimentos/instrumentación , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Alimentos Marinos/microbiología , Vibriosis/microbiología , Vibrio parahaemolyticus/aislamiento & purificación , ADN Bacteriano/análisis , ADN Bacteriano/genética , Electrodos , Diseño de Equipo , Grafito/química , Humanos , Límite de Detección , Sistemas de Atención de Punto , Vibrio parahaemolyticus/genética
4.
J Virol Methods ; 175(2): 141-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21619895

RESUMEN

In this study, a portable turbidimetric end-point detection method was devised and tested for the detection of Taura syndrome virus (TSV) using spectroscopic measurement of a loop-mediated isothermal amplification (LAMP) by-product: magnesium pyrophosphate (Mg(2)P(2)O(7)). The device incorporated a heating block that maintained an optimal temperature of 63°C for the duration of the RT-LAMP reaction. Turbidity of the RT-LAMP by-product was measured when light from a light-emitting diode (LED) passed through the tube to reach a light dependent resistance (LDR) detector. Results revealed that turbidity measurement of the RT-LAMP reactions using this device provided the same detection sensitivity as the agarose gel electrophoresis detection of RT-LAMP and nested RT-PCR (IQ2000™) products. Cross reactions with other shrimp viruses were not found, indicating that the RT-LAMP-turbidity measurement was highly specific to TSV. The combination of 10 min for rapid RNA preparation with 30 min for RT-LAMP amplification followed by turbidity measurement resulted in a total assay time of less than 1h compared to 4-8h for the nested RT-PCR method. RT-LAMP plus turbidity measurement constitutes a platform for the development of more rapid and user-friendly detection of TSV in the field.


Asunto(s)
Dicistroviridae/aislamiento & purificación , Nefelometría y Turbidimetría/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Penaeidae/virología , Virología/métodos , Animales , Secuencia de Bases , Cartilla de ADN/genética , Dicistroviridae/genética , Datos de Secuencia Molecular , Sensibilidad y Especificidad , Factores de Tiempo
5.
Biosens Bioelectron ; 26(2): 784-9, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20637589

RESUMEN

This work presents the first demonstration of a cantilever based cholerae sensor. Dynamic force microscopy within atomic force microscope (AFM) is applied to measure the cantilever's resonance frequency shift due to mass of cell bound on microcantilever surface. The Vibrio cholerae O1, a food and waterborne pathogen that caused cholera disease in human, is a target bacterium cell of interest. Commercial gold-coated AFM microcantilevers are immobilized with monoclonal antibody (anti-V. cholerae O1) by self-assembled monolayer method. V. cholerae O1 detection experiment is then conducted in concentrations ranging from 1×10(3) to 1×10(7) CFU/ml. The microcantilever-based sensor has a detection limit of ∼1×10(3) CFU/ml and a mass sensitivity, Δm/ΔF, of ∼146.5 pg/Hz, which is at least two orders of magnitude lower than other reported techniques and sufficient for V. cholerae detection in food products without pre-enrichment steps. In addition, V. cholerae O1 antigen-antibody binding on microcanilever is confirmed by scanning electron microscopy. The results demonstrate that the new biosensor is promising for high sensitivity, uncomplicated and rapid detection of V. cholerae O1.


Asunto(s)
Carga Bacteriana/instrumentación , Técnicas Biosensibles/instrumentación , Sistemas Microelectromecánicos/instrumentación , Microscopía de Fuerza Atómica/instrumentación , Vibrio cholerae O1/aislamiento & purificación , Vibrio cholerae/aislamiento & purificación , Diseño de Equipo , Análisis de Falla de Equipo , Vibrio cholerae/citología , Vibrio cholerae O1/citología
6.
Talanta ; 79(4): 995-1000, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19615498

RESUMEN

A microfabicated flow injection device has been developed for in-channel electrochemical detection (ECD) of a beta-agonist, namely salbutamol. The microfluidic system consists of PDMS (polydimethylsiloxane) microchannel and electrochemical electrodes formed on glass substrate. The carbon nanotube (CNT) on gold layer as working electrode, silver as reference electrode and platinum as auxiliary electrode were deposited on a glass substrate. Silver, platinum, gold and stainless steel catalyst layers were coated by DC-sputtering. CNTs were then grown on the glass substance by thermal chemical vapor deposition (CVD) with gravity effect and water-assisted etching. 100-microm-deep and 500-microm-wide PDMS microchannels fabricated by SU-8 molding and casting were then bonded on glass substrate by oxygen plasma treatment. Flow injection and ECD of salbutamol was performed with the amperometric detection mode for in-channel detection of salbutamol. The influences of flow rate, injection volume, and detection potential on the response of current signal were optimized. Analytical characteristics, such as sensitivity, repeatability and dynamic range have been evaluated. Fast and highly sensitive detection of salbutamol have been achieved. Thus, the proposed combination of the efficient CNT electrode and miniaturized lab-on-a-chip is a powerful platform for beta-agonists detection.


Asunto(s)
Agonistas Adrenérgicos beta/análisis , Albuterol/análisis , Análisis de Inyección de Flujo/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Nanotubos de Carbono/química , Dimetilpolisiloxanos/química , Electroquímica , Electrodos , Análisis de Inyección de Flujo/métodos , Vidrio/química , Técnicas Analíticas Microfluídicas/métodos , Reproducibilidad de los Resultados , Factores de Tiempo , Volatilización
7.
Sensors (Basel) ; 9(12): 10066-79, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22303162

RESUMEN

An immunoassay performed on a portable microfluidic device was evaluated for the determination of urinary albumin. An increase in absorbance at 500 nm resulting from immunoagglutination was monitored directly on the poly(dimethylsiloxane) (PDMS) microchip using a portable miniature fibre-optic spectrometer. A calibration curve was linear up to 10 mg L(-1) (r(2) = 0.993), with a detection limit of 0.81 mg L(-1) (S/N = 3). The proposed system showed good precision, with relative standard deviations (RSDs) of 5.1%, when evaluated with 10 mg L(-1) albumin (n = 10). Determination of urinary albumin with the proposed system gave results highly similar to those determined by the conventional spectrophotometric method using immunoturbidimetric detection (r(2) = 0.995; n = 15).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA