RESUMEN
During pregnancy, the body undergoes a great amount of changes in order to support a healthy developing fetus. In this context, maternal dietary supplementation is widely encouraged to provide adequate nutrition for the newborn. In the past few years, studies have emerged highlighting the benefits of polyphenols intake during pregnancy. Indeed, despite differences among reports, such as experimental model, polyphenol employed, dosage and regimen of administration, there is no doubt that the ingestion of these molecules has a protective effect in relation to three pregnancy-associated diseases or conditions: preeclampsia, gestational diabetes and fetal growth restriction. In this review, we describe the effects of different polyphenols and polyphenol-rich extracts or juices on the main outcomes of these common pregnancy-associated complications, obtained in human, animal and in vitro studies. Therefore, this work provides a critical analysis of the literature, and a summary of evidences, from which future research using polyphenols can be designed and evaluated.
RESUMEN
Autism spectrum disorder (ASD) is characterized by impaired social communication and interaction associated with repetitive or stereotyped behaviour. Prenatal valproic acid (VPA) exposure in rodents is a commonly used model of ASD. Resveratrol (RSV) has been shown to prevent interneuronal and behavioural impairments in the VPA model. We investigated the effects of prenatal VPA exposure and RSV on the GABAergic synaptic transmission, brain oscillations and on the genic expression of interneuron-associated transcription factor LHX6 in the primary somatosensory area (PSSA). Prenatal VPA exposure decreased the sIPSC and mIPSC frequencies and the sIPSC decay kinetics onto layers 4/5 pyramidal cells of PSSA. About 40% of VPA animals exhibited absence-like spike-wave discharge (SWD) events associated with behaviour arrest and increased power spectrum density of delta, beta and gamma cortical oscillations. VPA animals had reduced LHX6 expression in PSSA, but VPA animals treated with RSV had no changes on synaptic inhibition or LHX6 expression in the PSSA. SWD events associated with behaviour arrest and the abnormal increment of cortical oscillations were also absent in VPA animals treated with RSV. These findings provide new venues to investigate the role of both RSV and VPA in the pathophysiology of ASD and highlight the VPA animal model as an interesting tool to investigate pathways related to the aetiology and possible future therapies to this neuropsychiatric disorder.
Asunto(s)
Trastorno del Espectro Autista , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Embarazo , Ratas , Conducta Animal , Modelos Animales de Enfermedad , Resveratrol/farmacología , Roedores , Conducta Social , Corteza Somatosensorial , Transmisión Sináptica , Ácido Valproico/farmacologíaRESUMEN
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by several alterations, including disorganized brain cytoarchitecture and excitatory/inhibitory (E/I) imbalance. We aimed to analyze aspects associated with the inhibitory components in ASD, using bioinformatics to develop notions about embryonic life and tissue analysis for postnatal life. We analyzed microarray and RNAseq datasets of embryos from different ASD models, demonstrating that regions involved in neuronal development are affected. We evaluated the effect of prenatal treatment with resveratrol (RSV) on the neuronal organization and quantity of parvalbumin-positive (PV+), somatostatin-positive (SOM+), and calbindin-positive (CB+) GABAergic interneurons, besides the levels of synaptic proteins and GABA receptors in the medial prefrontal cortex (mPFC) and hippocampus (HC) of the ASD model induced by valproic acid (VPA). VPA increased the total number of neurons in the mPFC, while it reduced the number of SOM+ neurons, as well as the proportion of SOM+, PV+, and CB+ neurons (subregion-specific manner), with preventive effects of RSV. In summary, metabolic alterations or gene expression impairments could be induced by VPA, leading to extensive damage in the late developmental stages. By contrast, due to its antioxidant, neuroprotective, and opposite action on histone properties, RSV may avoid damages induced by VPA.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Efectos Tardíos de la Exposición Prenatal , Resveratrol , Ácido Valproico , Animales , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/inducido químicamente , Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/genética , Modelos Animales de Enfermedad , Femenino , Interneuronas/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Resveratrol/uso terapéutico , Ácido Valproico/efectos adversosRESUMEN
Autism spectrum disorder can present a plethora of clinical conditions associated with the disorder, such as greater brain volume in the first years of life in a significant percentage of patients. We aimed to evaluate the brain water content, the blood-brain barrier permeability, and the expression of aquaporin 1 and 4, and GFAP in a valproic acid-animal model, assessing the effect of resveratrol. On postnatal day 30, Wistar rats of the valproic acid group showed greater permeability of the blood-brain barrier to the Evans blue dye and a higher proportion of brain water volume, prevented both by resveratrol. Prenatal exposition to valproic acid diminished aquaporin 1 in the choroid plexus, in the primary somatosensory area, in the amygdala region, and in the medial prefrontal cortex, reduced aquaporin 4 in medial prefrontal cortex and increased aquaporin 4 levels in primary somatosensory area (with resveratrol prevention). Valproic acid exposition also increased the number of astrocytes and GFAP fluorescence in both primary somatosensory area and medial prefrontal cortex. In medial prefrontal cortex, resveratrol prevented the increased fluorescence. Finally, there was an effect of resveratrol per se on the number of astrocytes and GFAP fluorescence in the amygdala region and in the hippocampus. Thus, this work demonstrates significant changes in blood-brain barrier permeability, edema formation, distribution of aquaporin 1 and 4, in addition to astrocytes profile in the animal model of autism, as well as the use of resveratrol as a tool to investigate the mechanisms involved in the pathophysiology of autism spectrum disorder.
Asunto(s)
Antioxidantes/farmacología , Acuaporina 4/metabolismo , Trastorno Autístico/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Edema Encefálico/prevención & control , Resveratrol/farmacología , Animales , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Permeabilidad/efectos de los fármacos , Ratas , Ratas WistarRESUMEN
Neurodevelopmental disorders (NDDs) are a heterogeneous and highly prevalent group of psychiatric conditions marked by impairments in the nervous system. Their onset occurs during gestation, and the alterations are observed throughout the postnatal life. Although many genetic and environmental risk factors have been described in this context, the interactions between them challenge the understanding of the pathways associated with NDDs. Transcription factors (TFs)-a group of over 1,600 proteins that can interact with DNA, regulating gene expression through modulation of RNA synthesis-represent a point of convergence for different risk factors. In addition, TFs organize critical processes like angiogenesis, blood-brain barrier formation, myelination, neuronal migration, immune activation, and many others in a time and location-dependent way. In this review, we summarize important TF alterations in NDD and associated disorders, along with specific impairments observed in animal models, and, finally, establish hypotheses to explain how these proteins may be critical mediators in the context of genome-environment interactions.
Asunto(s)
Interacción Gen-Ambiente , Trastornos Mentales/etiología , Trastornos del Neurodesarrollo/etiología , Factores de Transcripción/genética , Animales , Humanos , Trastornos Mentales/genética , Trastornos del Neurodesarrollo/genética , Factores de RiesgoRESUMEN
Autism spectrum disorder (ASD) is characterized by impairments in both social communication and interaction and repetitive or stereotyped behaviors. Although its etiology remains unknown, genetic and environmental risk factors have been associated with this disorder, including the exposure to valproic acid (VPA) during pregnancy. Resveratrol (RSV) is an anti-inflammatory and antioxidant molecule known to prevent social impairments in the VPA animal model of autism. This study aimed to analyze the effects of prenatal exposure to VPA, as well as possible preventive effects of RSV, on sensory behavior, the localization of GABAergic parvalbumin (PV+) neurons in sensory brain regions and the expression of proteins of excitatory and inhibitory synapses. Pregnant rats were treated daily with RSV (3.6 mg/kg) from E6.5 to E18.5 and injected with VPA (600 mg/kg) in the E12.5. Male pups were analyzed in Nest Seeking (NS) behavior and in whisker nuisance task (WNT). At P30, the tissues were removed and analyzed by immunofluorescence and western blotting. Our data showed for the first time an altered localization of PV+-neurons in primary sensory cortex and amygdala. We also showed a reduced level of gephyrin in the primary somatosensory area (PSSA) of VPA animals. The treatment with RSV prevented all the aforementioned alterations triggered by VPA. Our data shed light on the relevance of sensory component in ASD and highlights the interplay between RSV and VPA animal model as an important tool to investigate the pathophysiology of ASD.